Hints will display for most wrong answers; explanations for most right answers. You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test. Some of the sample questions were more convoluted than I could bear to write. See terms of use. See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

## MTEL General Curriculum Mathematics Practice

Question 1 |

#### The pattern below consists of a row of black squares surrounded by white squares.

#### How many white squares would surround a row of 157 black squares?

## 314Hint: Try your procedure on a smaller number that you can count to see where you made a mistake. | |

## 317Hint: Are there ever an odd number of white squares? | |

## 320Hint: One way to see this is that there are 6 tiles on the left and right ends, and the rest of the white tiles are twice the number of black tiles (there are many other ways to look at it too). | |

## 322Hint: Try your procedure on a smaller number that you can count to see where you made a mistake. |

Question 2 |

#### Which of the following is the equation of a linear function?

\( \large y={{x}^{2}}+2x+7\) Hint: This is a quadratic function. | |

\( \large y={{2}^{x}}\) Hint: This is an exponential function. | |

\( \large y=\dfrac{15}{x}\) Hint: This is an inverse function. | |

\( \large y=x+(x+4)\) Hint: This is a linear function, y=2x+4, it's graph is a straight line with slope 2 and y-intercept 4. |

Question 3 |

#### A class is using base-ten block to represent numbers. A large cube represents 1000, a flat represents 100, a rod represents 10, and a little cube represents 1. Which of these is not a correct representation for 2,347?

## 23 flats, 4 rods, 7 little cubesHint: Be sure you read the question carefully: 2300+40+7=2347 | |

## 2 large cubes, 3 flats, 47 rodsHint: 2000+300+470 \( \neq\) 2347 | |

## 2 large cubes, 34 rods, 7 little cubesHint: Be sure you read the question carefully: 2000+340+7=2347 | |

## 2 large cubes, 3 flats, 4 rods, 7 little cubesHint: Be sure you read the question carefully: 2000+300+40+7=2347 |

Question 4 |

#### What is the mathematical name of the three-dimensional polyhedron depicted below?

## TetrahedronHint: All the faces of a tetrahedron are triangles. | |

## Triangular PrismHint: A prism has two congruent, parallel bases, connected by parallelograms (since this is a right prism, the parallelograms are rectangles). | |

## Triangular PyramidHint: A pyramid has one base, not two. | |

## TrigonHint: A trigon is a triangle (this is not a common term). |

Question 5 |

#### In each expression below N represents a negative integer. Which expression could have a negative value?

\( \large {{N}^{2}}\) Hint: Squaring always gives a non-negative value. | |

\( \large 6-N\) Hint: A story problem for this expression is, if it was 6 degrees out at noon and N degrees out at sunrise, by how many degrees did the temperature rise by noon? Since N is negative, the answer to this question has to be positive, and more than 6. | |

\( \large -N\) Hint: If N is negative, then -N is positive | |

\( \large 6+N\) Hint: For example, if \(N=-10\), then \(6+N = -4\) |

Question 6 |

#### Use the expression below to answer the question that follows.

#### \(\large \dfrac{\left( 155 \right)\times \left( 6,124 \right)}{977}\)

#### Which of the following is the best estimate of the expression above?

## 100Hint: 6124/977 is approximately 6. | |

## 200Hint: 6124/977 is approximately 6. | |

## 1,000Hint: 6124/977 is approximately 6. 155 is approximately 150, and \( 6 \times 150 = 3 \times 300 = 900\), so this answer is closest. | |

## 2,000Hint: 6124/977 is approximately 6. |

Question 7 |

#### The picture below represents a board with pegs on it, where the closest distance between two pegs is 1 cm. What is the area of the pentagon shown?

Question 8 |

#### Which of the following is equivalent to

#### \( \large A-B+C\div D\times E\)?

\( \large A-B-\dfrac{C}{DE}
\) Hint: In the order of operations, multiplication and division have the same priority, so do them left to right; same with addition and subtraction. | |

\( \large A-B+\dfrac{CE}{D}\) Hint: In practice, you're better off using parentheses than writing an expression like the one in the question. The PEMDAS acronym that many people memorize is misleading. Multiplication and division have equal priority and are done left to right. They have higher priority than addition and subtraction. Addition and subtraction also have equal priority and are done left to right. | |

\( \large \dfrac{AE-BE+CE}{D}\) Hint: Use order of operations, don't just compute left to right. | |

\( \large A-B+\dfrac{C}{DE}\) Hint: In the order of operations, multiplication and division have the same priority, so do them left to right |

Question 9 |

#### Use the graph below to answer the question that follows.

#### If the polygon shown above is reflected about the y axis and then rotated 90 degrees clockwise about the origin, which of the following graphs is the result?

Hint: Try following the point (1,4) to see where it goes after each transformation. | |

Hint: Make sure you're reflecting in the correct axis. | |

Hint: Make sure you're rotating the correct direction. |

Question 10 |

#### Elena is going to use a calculator to check whether or not 267 is prime. She will pick certain divisors, and then find 267 divided by each, and see if she gets a whole number. If she never gets a whole number, then she's found a prime. Which numbers does Elena NEED to check before she can stop checking and be sure she has a prime?

## All natural numbers from 2 to 266.Hint: She only needs to check primes -- checking the prime factors of any composite is enough to look for divisors. As a test taking strategy, the other three choices involve primes, so worth thinking about. | |

## All primes from 2 to 266 .Hint: Remember, factors come in pairs (except for square root factors), so she would first find the smaller of the pair and wouldn't need to check the larger. | |

## All primes from 2 to 133 .Hint: She doesn't need to check this high. Factors come in pairs, and something over 100 is going to be paired with something less than 3, so she will find that earlier. | |

## All primes from \( \large 2\) to \( \large \sqrt{267}\).Hint: \(\sqrt{267} \times \sqrt{267}=267\). Any other pair of factors will have one factor less than \( \sqrt{267}\) and one greater, so she only needs to check up to \( \sqrt{267}\). |

Question 11 |

#### A family went on a long car trip. Below is a graph of how far they had driven at each hour.

#### Which of the following is closest to their average speed driving on the trip?

\( \large d=20t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. | |

\( \large d=30t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. | |

\( \large d=40t\) | |

\( \large d=50t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. |

Question 12 |

#### The Americans with Disabilties Act (ADA) regulations state that the maximum slope for a wheelchair ramp in new construction is 1:12, although slopes between 1:16 and 1:20 are preferred. The maximum rise for any run is 30 inches. The graph below shows the rise and runs of four different wheelchair ramps. Which ramp is in compliance with the ADA regulations for new construction?

## AHint: Rise is more than 30 inches. | |

## BHint: Run is almost 24 feet, so rise can be almost 2 feet. | |

## CHint: Run is 12 feet, so rise can be at most 1 foot. | |

## DHint: Slope is 1:10 -- too steep. |

Question 13 |

#### The Venn Diagram below gives data on the number of seniors, athletes, and vegetarians in the student body at a college:

#### How many students at the college are seniors who are not vegetarians?

\( \large 137\) Hint: Doesn't include the senior athletes who are not vegetarians. | |

\( \large 167\) | |

\( \large 197\) Hint: That's all seniors, including vegetarians. | |

\( \large 279\) Hint: Includes all athletes who are not vegetarians, some of whom are not seniors. |

Question 14 |

#### Exactly one of the numbers below is a prime number. Which one is it?

\( \large511 \) Hint: Divisible by 7. | |

\( \large517\) Hint: Divisible by 11. | |

\( \large519\) Hint: Divisible by 3. | |

\( \large521\) |

Question 15 |

#### What set of transformations will transform the leftmost image into the rightmost image?

## A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.Hint: Part of the figure would move below the x-axis with these transformations. | |

## A translation 3 units up, followed by a reflection about the line y=x.Hint: See what happens to the point (5,1) under this set of transformations. | |

## A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up. | |

## A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.Hint: See what happens to the point (3,3) under this set of transformations. |

Question 16 |

#### The function d(x) gives the result when 12 is divided by x. Which of the following is a graph of d(x)?

Hint: d(x) is 12 divided by x, not x divided by 12. | |

Hint: When x=2, what should d(x) be? | |

Hint: When x=2, what should d(x) be? | |

Question 17 |

#### The following story situations model \( 12\div 3\):

#### I) Jack has 12 cookies, which he wants to share equally between himself and two friends. How many cookies does each person get?

#### II) Trent has 12 cookies, which he wants to put into bags of 3 cookies each. How many bags can he make?

#### III) Cicely has $12. Cookies cost $3 each. How many cookies can she buy?

#### Which of these questions illustrate the same model of division, either partitive (partioning) or measurement (quotative)?

## I and II | |

## I and III | |

## II and IIIHint: Problem I is partitive (or partitioning or sharing) -- we put 12 objects into 3 groups. Problems II and III are quotative (or measurement) -- we put 12 objects in groups of 3. | |

## All three problems model the same meaning of division |

Question 18 |

#### Use the graph below to answer the question that follows.

#### Which of the following is a correct equation for the graph of the line depicted above?

\( \large y=-\dfrac{1}{2}x+2\) Hint: The slope is -1/2 and the y-intercept is 2. You can also try just plugging in points. For example, this is the only choice that gives y=1 when x=2. | |

\( \large 4x=2y\) Hint: This line goes through (0,0); the graph above does not. | |

\( \large y=x+2\) Hint: The line pictured has negative slope. | |

\( \large y=-x+2\) Hint: Try plugging x=4 into this equation and see if that point is on the graph above. |

Question 19 |

#### If two fair coins are flipped, what is the probability that one will come up heads and the other tails?

\( \large \dfrac{1}{4}\) Hint: Think of the coins as a penny and a dime, and list all possibilities. | |

\( \large \dfrac{1}{3} \) Hint: This is a very common misconception. There are three possible outcomes -- both heads, both tails, and one of each -- but they are not equally likely. Think of the coins as a penny and a dime, and list all possibilities. | |

\( \large \dfrac{1}{2}\) Hint: The possibilities are HH, HT, TH, TT, and all are equally likely. Two of the four have one of each coin, so the probability is 2/4=1/2. | |

\( \large \dfrac{3}{4}\) Hint: Think of the coins as a penny and a dime, and list all possibilities. |

Question 20 |

#### In which table below is y a function of x?

Hint: If x=3, y can have two different values, so it's not a function. | |

Hint: If x=3, y can have two different values, so it's not a function. | |

Hint: If x=1, y can have different values, so it's not a function. | |

Hint: Each value of x always corresponds to the same value of y. |

Question 21 |

#### Use the expression below to answer the question that follows:

#### \( \large \dfrac{\left( 7,154 \right)\times \left( 896 \right)}{216}\)

#### Which of the following is the best estimate of the expression above?

## 2,000Hint: The answer is bigger than 7,000. | |

## 20,000Hint: Estimate 896/216 first. | |

## 3,000Hint: The answer is bigger than 7,000. | |

## 30,000Hint: \( \dfrac{896}{216} \approx 4\) and \(7154 \times 4\) is over 28,000, so this answer is closest. |

Question 22 |

#### Below are four inputs and outputs for a function machine representing the function A:

#### Which of the following equations could also represent A for the values shown?

\( \large A(n)=n+4\) Hint: For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= -1 would output 3, not 0 as the machine does. | |

\( \large A(n)=n+2\) Hint: For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 4, not 6 as the machine does. | |

\( \large A(n)=2n+2\) Hint: Simply plug in each of the four function machine input values, and see that the equation produces the correct output, e.g. A(2)=6, A(-1)=0, etc. | |

\( \large A(n)=2\left( n+2 \right)\) Hint: For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 8, not 6 as the machine does. |

Question 23 |

#### Given that 10 cm is approximately equal to 4 inches, which of the following expressions models a way to find out approximately how many inches are equivalent to 350 cm?

\( \large 350\times \left( \dfrac{10}{4} \right)\) Hint: The final result should be smaller than 350, and this answer is bigger. | |

\( \large 350\times \left( \dfrac{4}{10} \right)\) Hint: Dimensional analysis can help here: \(350 \text{cm} \times \dfrac{4 \text{in}}{10 \text{cm}}\). The cm's cancel and the answer is in inches. | |

\( \large (10-4) \times 350
\) Hint: This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense. | |

\( \large (350-10) \times 4\) Hint: This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense. |

Question 24 |

#### Which of the following is equivalent to \( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}?\)

\( \large \dfrac{7}{16}\) Hint: Multiplication comes before addition and subtraction in the order of operations. | |

\( \large \dfrac{1}{2}\) Hint: Addition and subtraction are of equal priority in the order of operations -- do them left to right. | |

\( \large \dfrac{3}{4}\) Hint: \( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}\)=\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}+-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}\) | |

\( \large \dfrac{3}{16}\) Hint: Multiplication comes before addition and subtraction in the order of operations. |

Question 25 |

#### The speed of sound in dry air at 68 degrees F is 343.2 meters per second. Which of the expressions below could be used to compute the number of kilometers that a sound wave travels in 10 minutes (in dry air at 68 degrees F)?

\( \large 343.2\times 60\times 10\) Hint: In kilometers, not meters. | |

\( \large 343.2\times 60\times 10\times \dfrac{1}{1000}\) Hint: Units are meters/sec \(\times\) seconds/minute \(\times\) minutes \(\times\) kilometers/meter, and the answer is in kilometers. | |

\( \large 343.2\times \dfrac{1}{60}\times 10\) Hint: Include units and make sure answer is in kilometers. | |

\( \large 343.2\times \dfrac{1}{60}\times 10\times \dfrac{1}{1000}\) Hint: Include units and make sure answer is in kilometers. |

Question 26 |

#### Below are front, side, and top views of a three-dimensional solid.

#### Which of the following could be the solid shown above?

## A sphereHint: All views would be circles. | |

## A cylinder | |

## A coneHint: Two views would be triangles, not rectangles. | |

## A pyramidHint: How would one view be a circle? |

Question 27 |

#### Aya and Kendra want to estimate the height of a tree. On a sunny day, Aya measures Kendra's shadow as 3 meters long, and Kendra measures the tree's shadow as 15 meters long. Kendra is 1.5 meters tall. How tall is the tree?

## 7.5 metersHint: Here is a picture, note that the large and small right triangles are similar: One way to do the problem is to note that there is a dilation (scale) factor of 5 on the shadows, so there must be that factor on the heights too. Another way is to note that the shadows are twice as long as the heights. | |

## 22.5 metersHint: Draw a picture. | |

## 30 metersHint: Draw a picture. | |

## 45 metersHint: Draw a picture. |

Question 28 |

#### Which of the lists below contains only irrational numbers?

\( \large\pi , \quad \sqrt{6},\quad \sqrt{\dfrac{1}{2}}\) | |

\( \large\pi , \quad \sqrt{9}, \quad \pi +1\) Hint: \( \sqrt{9}=3\) | |

\( \large\dfrac{1}{3},\quad \dfrac{5}{4},\quad \dfrac{2}{9}\) Hint: These are all rational. | |

\( \large-3,\quad 14,\quad 0\) Hint: These are all rational. |

Question 29 |

#### What is the least common multiple of 540 and 216?

\( \large{{2}^{5}}\cdot {{3}^{6}}\cdot 5\) Hint: This is the product of the numbers, not the LCM. | |

\( \large{{2}^{3}}\cdot {{3}^{3}}\cdot 5\) Hint: One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then for each prime that's a factor of either number, use the largest exponent that appears in one of the factorizations. You can also take the product of the two numbers divided by their GCD. | |

\( \large{{2}^{2}}\cdot {{3}^{3}}\cdot 5\) Hint: 216 is a multiple of 8. | |

\( \large{{2}^{2}}\cdot {{3}^{2}}\cdot {{5}^{2}}\) Hint: Not a multiple of 216 and not a multiple of 540. |

Question 30 |

#### An above-ground swimming pool is in the shape of a regular hexagonal prism, is one meter high, and holds 65 cubic meters of water. A second pool has a base that is also a regular hexagon, but with sides twice as long as the sides in the first pool. This second pool is also one meter high. How much water will the second pool hold?

\( \large 65\text{ }{{\text{m}}^{3}}\) Hint: A bigger pool would hold more water. | |

\( \large 65\cdot 2\text{ }{{\text{m}}^{3}}\) Hint: Try a simpler example, say doubling the sides of the base of a 1 x 1 x 1 cube. | |

\( \large 65\cdot 4\text{ }{{\text{m}}^{3}}\) Hint: If we think of the pool as filled with 1 x 1 x 1 cubes (and some fractions of cubes), then scaling to the larger pool changes each 1 x 1 x 1 cube to a 2 x 2 x 1 prism, or multiplies volume by 4. | |

\( \large 65\cdot 8\text{ }{{\text{m}}^{3}}\) Hint: Try a simpler example, say doubling the sides of the base of a 1 x 1 x 1 cube. |

Question 31 |

#### A map has a scale of 3 inches = 100 miles. Cities A and B are 753 miles apart. Let d be the distance between the two cities on the map. Which of the following is not correct?

\( \large \dfrac{3}{100}=\dfrac{d}{753}\) Hint: Units on both side are inches/mile, and both numerators and denominators correspond -- this one is correct. | |

\( \large \dfrac{3}{100}=\dfrac{753}{d}\) Hint: Unit on the left is inches per mile, and on the right is miles per inch. The proportion is set up incorrectly (which is what we wanted). Another strategy is to notice that one of A or B has to be the answer because they cannot both be correct proportions. Then check that cross multiplying on A gives part D, so B is the one that is different from the other 3. | |

\( \large \dfrac{3}{d}=\dfrac{100}{753}\) Hint: Unitless on each side, as inches cancel on the left and miles on the right. Numerators correspond to the map, and denominators to the real life distances -- this one is correct. | |

\( \large 100d=3\cdot 753\) Hint: This is equivalent to part A. |

Question 32 |

#### Use the graph below to answer the question that follows:

#### The graph above represents the equation \( \large 3x+Ay=B\), where A and B are integers. What are the values of A and B?

\( \large A = -2, B= 6\) Hint: Plug in (2,0) to get B=6, then plug in (0,-3) to get A=-2. | |

\( \large A = 2, B = 6\) Hint: Try plugging (0,-3) into this equation. | |

\( \large A = -1.5, B=-3\) Hint: The problem said that A and B were integers and -1.5 is not an integer. Don't try to use slope-intercept form. | |

\( \large A = 2, B = -3\) Hint: Try plugging (2,0) into this equation. |

Question 33 |

#### Below is a portion of a number line:

#### Point B is halfway between two tick marks. What number is represented by Point B?

\( \large 0.645\) Hint: That point is marked on the line, to the right. | |

\( \large 0.6421\) Hint: That point is to the left of point B. | |

\( \large 0.6422\) Hint: That point is to the left of point B. | |

\( \large 0.6425\) |

Question 34 |

#### Below is a pictorial representation of \(2\dfrac{1}{2}\div \dfrac{2}{3}\):

#### Which of the following is the best description of how to find the quotient from the picture?

## The quotient is \(3\dfrac{3}{4}\). There are 3 whole blocks each representing \(\dfrac{2}{3}\) and a partial block composed of 3 small rectangles. The 3 small rectangles represent \(\dfrac{3}{4}\) of \(\dfrac{2}{3}\). | |

## The quotient is \(3\dfrac{1}{2}\). There are 3 whole blocks each representing \(\dfrac{2}{3}\) and a partial block composed of 3 small rectangles. The 3 small rectangles represent \(\dfrac{3}{6}\) of a whole, or \(\dfrac{1}{2}\).Hint: We are counting how many 2/3's are in 2 1/2: the unit becomes 2/3, not 1. | |

## The quotient is \(\dfrac{4}{15}\). There are four whole blocks separated into a total of 15 small rectangles.Hint: This explanation doesn't make much sense. Probably you are doing "invert and multiply," but inverting the wrong thing. | |

## This picture cannot be used to find the quotient because it does not show how to separate \(2\dfrac{1}{2}\) into equal sized groups.Hint: Study the measurement/quotative model of division. It's often very useful with fractions. |

Question 35 |

#### What is the length of side \(\overline{BD}\) in the triangle below, where \(\angle DBA\) is a right angle?

\( \large 1\) Hint: Use the Pythagorean Theorem. | |

\( \large \sqrt{5}\) Hint: \(2^2+e^2=3^2\) or \(4+e^2=9;e^2=5; e=\sqrt{5}\). | |

\( \large \sqrt{13}\) Hint: e is not the hypotenuse. | |

\( \large 5\) Hint: Use the Pythagorean Theorem. |

Question 36 |

#### Here is a mental math strategy for computing 26 x 16:

#### Step 1: 100 x 16 = 1600

#### Step 2: 25 x 16 = 1600 ÷· 4 = 400

#### Step 3: 26 x 16 = 400 + 16 = 416

#### Which property best justifies Step 3 in this strategy?

## Commutative Property.Hint: For addition, the commutative property is \(a+b=b+a\) and for multiplication it's \( a \times b = b \times a\). | |

## Associative Property.Hint: For addition, the associative property is \((a+b)+c=a+(b+c)\) and for multiplication it's \((a \times b) \times c=a \times (b \times c)\) | |

## Identity Property.Hint: 0 is the additive identity, because \( a+0=a\) and 1 is the multiplicative identity because \(a \times 1=a\). The phrase "identity property" is not standard. | |

## Distributive Property.Hint: \( (25+1) \times 16 = 25 \times 16 + 1 \times 16 \). This is an example of the distributive property of multiplication over addition. |

Question 37 |

#### Four children randomly line up, single file. What is the probability that they are in height order, with the shortest child in front? All of the children are different heights.

\( \large \dfrac{1}{4}\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{256}
\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{16}\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{24}\) Hint: The number of ways for the children to line up is \(4!=4 \times 3 \times 2 \times 1 =24\) -- there are 4 choices for who is first in line, then 3 for who is second, etc. Only one of these lines has the children in the order specified. |

Question 38 |

#### The histogram below shows the number of pairs of footware owned by a group of college students.

#### Which of the following statements can be inferred from the graph above?

## The median number of pairs of footware owned is between 50 and 60 pairs.Hint: The same number of data points are less than the median as are greater than the median -- but on this histogram, clearly more than half the students own less than 50 pairs of shoes, so the median is less than 50. | |

## The mode of the number of pairs of footware owned is 20.Hint: The mode is the most common number of pairs of footwear owned. We can't tell it from this histogram because each bar represents 10 different numbers-- perhaps 8 students each own each number from 10 to 19, but 40 students own exactly 6 pairs of shoes.... or perhaps not.... | |

## The mean number of pairs of footware owned is less than the median number of pairs of footware owned.Hint: This is a right skewed distribution, and so the mean is bigger than the median -- the few large values on the right pull up the mean, but have little effect on the median. | |

## The median number of pairs of footware owned is between 10 and 20.Hint: There are approximately 230 students represented in this survey, and the 41st through 120th lowest values are between 10 and 20 -- thus the middle value is in that range. |

Question 39 |

#### Which of the graphs below represent functions?

**I.**

**II.**

**III.**

**IV.**

## I and IV only.Hint: There are vertical lines that go through 2 points in IV . | |

## I and III only.Hint: Even though III is not continuous, it's still a function (assuming that vertical lines between the "steps" do not go through 2 points). | |

## II and III only.Hint: Learn about the vertical line test. | |

## I, II, and IV only.Hint: There are vertical lines that go through 2 points in II. |

Question 40 |

#### In the triangle below, \(\overline{AC}\cong \overline{AD}\cong \overline{DE}\) and \(m\angle CAD=100{}^\circ \). What is \(m\angle DAE\)?

\( \large 20{}^\circ \) Hint: Angles ACD and ADC are congruent since they are base angles of an isosceles triangle. Since the angles of a triangle sum to 180, they sum to 80, and they are 40 deg each. Thus angle ADE is 140 deg, since it makes a straight line with angle ADC. Angles DAE and DEA are base angles of an isosceles triangle and thus congruent-- they sum to 40 deg, so are 20 deg each. | |

\( \large 25{}^\circ \) Hint: If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal. | |

\( \large 30{}^\circ \) Hint: If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal. | |

\( \large 40{}^\circ \) Hint: Make sure you're calculating the correct angle. |

Question 41 |

#### The "houses" below are made of toothpicks and gum drops.

#### How many toothpicks are there in a row of 53 houses?

## 212Hint: Can the number of toothpicks be even? | |

## 213Hint: One way to see this is that every new "house" adds 4 toothpicks to the leftmost vertical toothpick -- so the total number is 1 plus 4 times the number of "houses." There are many other ways to look at the problem too. | |

## 217Hint: Try your strategy with a smaller number of "houses" so you can count and find your mistake. | |

## 265Hint: Remember that the "houses" overlap some walls. |

Question 42 |

#### Taxicab fares in Boston (Spring 2012) are $2.60 for the first \(\dfrac{1}{7}\) of a mile or less and $0.40 for each \(\dfrac{1}{7}\) of a mile after that.

#### Let d represent the distance a passenger travels in miles (with \(d>\dfrac{1}{7}\)). Which of the following expressions represents the total fare?

\( \large \$2.60+\$0.40d\) Hint: It's 40 cents for 1/7 of a mile, not per mile. | |

\( \large \$2.60+\$0.40\dfrac{d}{7}\) Hint: According to this equation, going 7 miles would cost $3; does that make sense? | |

\( \large \$2.20+\$2.80d\) Hint: You can think of the fare as $2.20 to enter the cab, and then $0.40 for each 1/7 of a mile, including the first 1/7 of a mile (or $2.80 per mile).
Alternatively, you pay $2.60 for the first 1/7 of a mile, and then $2.80 per mile for d-1/7 miles. The total is 2.60+2.80(d-1/7) = 2.60+ 2.80d -.40 = 2.20+2.80d. | |

\( \large \$2.60+\$2.80d\) Hint: Don't count the first 1/7 of a mile twice. |

Question 43 |

#### Below is a portion of a number line.

#### Point A is one-quarter of the distance from 0.26 to 0.28. What number is represented by point A?

\( \large0.26\) Hint: Please reread the question. | |

\( \large0.2625\) Hint: This is one-quarter of the distance between 0.26 and 0.27, which is not what the question asked. | |

\( \large0.265\) | |

\( \large0.27\) Hint: Please read the question more carefully. This answer would be correct if Point A were halfway between the tick marks, but it's not. |

Question 44 |

#### The letters A, and B represent digits (possibly equal) in the ten digit number x=1,438,152,A3B. For which values of A and B is x divisible by 12, but not by 9?

\( \large A = 0, B = 4\) Hint: Digits add to 31, so not divisible by 3, so not divisible by 12. | |

\( \large A = 7, B = 2\) Hint: Digits add to 36, so divisible by 9. | |

\( \large A = 0, B = 6\) Hint: Digits add to 33, divisible by 3, not 9. Last digits are 36, so divisible by 4, and hence by 12. | |

\( \large A = 4, B = 8\) Hint: Digits add to 39, divisible by 3, not 9. Last digits are 38, so not divisible by 4, so not divisible by 12. |

Question 45 |

#### A biology class requires a lab fee, which is a whole number of dollars, and the same amount for all students. On Monday the instructor collected $70 in fees, on Tuesday she collected $126, and on Wednesday she collected $266. What is the largest possible amount the fee could be?

## $2Hint: A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers. | |

## $7Hint: A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers. | |

## $14Hint: This is the greatest common factor of 70, 126, and 266. | |

## $70Hint: Not a factor of 126 or 266, so couldn't be correct. |

List |

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed). General comments can be left here.