## 45 Random Questions

Hints will display for most wrong answers; explanations for most right answers. You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test. Some of the sample questions were more convoluted than I could bear to write. See terms of use. See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

## MTEL General Curriculum Mathematics Practice

Question 1 |

#### Use the expression below to answer the question that follows.

#### \( \large 3\times {{10}^{4}}+2.2\times {{10}^{2}}\)

#### Which of the following is closest to the expression above?

## Five millionHint: Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values. | |

## Fifty thousandHint: Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values. | |

## Three millionHint: Don't add the exponents. | |

## Thirty thousandHint: \( 3\times {{10}^{4}} = 30,000;\) the other term is much smaller and doesn't change the estimate. |

Question 2 |

#### The speed of sound in dry air at 68 degrees F is 343.2 meters per second. Which of the expressions below could be used to compute the number of kilometers that a sound wave travels in 10 minutes (in dry air at 68 degrees F)?

\( \large 343.2\times 60\times 10\) Hint: In kilometers, not meters. | |

\( \large 343.2\times 60\times 10\times \dfrac{1}{1000}\) Hint: Units are meters/sec \(\times\) seconds/minute \(\times\) minutes \(\times\) kilometers/meter, and the answer is in kilometers. | |

\( \large 343.2\times \dfrac{1}{60}\times 10\) Hint: Include units and make sure answer is in kilometers. | |

\( \large 343.2\times \dfrac{1}{60}\times 10\times \dfrac{1}{1000}\) Hint: Include units and make sure answer is in kilometers. |

Question 3 |

#### Which of the lists below contains only irrational numbers?

\( \large\pi , \quad \sqrt{6},\quad \sqrt{\dfrac{1}{2}}\) | |

\( \large\pi , \quad \sqrt{9}, \quad \pi +1\) Hint: \( \sqrt{9}=3\) | |

\( \large\dfrac{1}{3},\quad \dfrac{5}{4},\quad \dfrac{2}{9}\) Hint: These are all rational. | |

\( \large-3,\quad 14,\quad 0\) Hint: These are all rational. |

Question 4 |

#### The following story situations model \( 12\div 3\):

#### I) Jack has 12 cookies, which he wants to share equally between himself and two friends. How many cookies does each person get?

#### II) Trent has 12 cookies, which he wants to put into bags of 3 cookies each. How many bags can he make?

#### III) Cicely has $12. Cookies cost $3 each. How many cookies can she buy?

#### Which of these questions illustrate the same model of division, either partitive (partioning) or measurement (quotative)?

## I and II | |

## I and III | |

## II and IIIHint: Problem I is partitive (or partitioning or sharing) -- we put 12 objects into 3 groups. Problems II and III are quotative (or measurement) -- we put 12 objects in groups of 3. | |

## All three problems model the same meaning of division |

Question 5 |

#### Kendra is trying to decide which fraction is greater, \( \dfrac{4}{7}\) or \( \dfrac{5}{8}\). Which of the following answers shows the best reasoning?

## \( \dfrac{4}{7}\) is \( \dfrac{3}{7}\)away from 1, and \( \dfrac{5}{8}\) is \( \dfrac{3}{8}\)away from 1. Since eighth’s are smaller than seventh’s, \( \dfrac{5}{8}\) is closer to 1, and is the greater of the two fractions. | |

## \( 7-4=3\) and \( 8-5=3\), so the fractions are equal.Hint: Not how to compare fractions. By this logic, 1/2 and 3/4 are equal, but 1/2 and 2/4 are not. | |

## \( 4\times 8=32\) and \( 7\times 5=35\). Since \( 32<35\) , \( \dfrac{5}{8}<\dfrac{4}{7}\)Hint: Starts out as something that works, but the conclusion is wrong. 4/7 = 32/56 and 5/8 = 35/56. The cross multiplication gives the numerators, and 35/56 is bigger. | |

## \( 4<5\) and \( 7<8\), so \( \dfrac{4}{7}<\dfrac{5}{8}\)Hint: Conclusion is correct, logic is wrong. With this reasoning, 1/2 would be less than 2/100,000. |

Question 6 |

#### Below are several expressions

I. \(\large \dfrac{1}{2}+\dfrac{1}{3}\) | II. \( \large .400000\) | III. \(\large\dfrac{1}{5}+\dfrac{1}{5}\) |

IV. \( \large 40\% \) | V. \( \large 0.25 \) | VI. \(\large\dfrac{14}{35}\) |

#### Which of the lists below includes all of the above expressions that are equivalent to \( \dfrac{2}{5}\)?

## I, III, V, VIHint: I and V are not at all how fractions and decimals work. | |

## III, VIHint: These are right, but there are more. | |

## II, III, VIHint: These are right, but there are more. | |

## II, III, IV, VI |

Question 7 |

#### M is a multiple of 26. Which of the following cannot be true?

## M is odd.Hint: All multiples of 26 are also multiples of 2, so they must be even. | |

## M is a multiple of 3.Hint: 3 x 26 is a multiple of both 3 and 26. | |

## M is 26.Hint: 1 x 26 is a multiple of 26. | |

## M is 0.Hint: 0 x 26 is a multiple of 26. |

Question 8 |

#### Use the graph below to answer the question that follows:

#### The graph above best matches which of the following scenarios:

## George left home at 10:00 and drove to work on a crooked path. He was stopped in traffic at 10:30 and 10:45. He drove 30 miles total.Hint: Just because he ended up 30 miles from home doesn't mean he drove 30 miles total. | |

## George drove to work. On the way to work there is a little hill and a big hill. He slowed down for them. He made it to work at 11:15.Hint: The graph is not a picture of the roads. | |

## George left home at 10:15. He drove 10 miles, then realized he’d forgotten something at home. He turned back and got what he’d forgotten. Then he drove in a straight line, at many different speeds, until he got to work around 11:15.Hint: A straight line on a distance versus time graph means constant speed. | |

## George left home at 10:15. He drove 10 miles, then realized he’d forgotten something at home. He turned back and got what he’d forgotten. Then he drove at a constant speed until he got to work around 11:15. |

Question 9 |

#### The table below gives the result of a survey at a college, asking students whether they were residents or commuters:

#### Based on the above data, what is the probability that a randomly chosen commuter student is a junior or a senior?

\( \large \dfrac{34}{43}\) | |

\( \large \dfrac{34}{71}\) Hint: This is the probability that a randomly chosen junior or senior is a commuter student. | |

\( \large \dfrac{34}{147}\) Hint: This is the probability that a randomly chosen student is a junior or senior who is a commuter. | |

\( \large \dfrac{71}{147}\) Hint: This is the probability that a randomly chosen student is a junior or a senior. |

Question 10 |

#### Which of the numbers below is a fraction equivalent to \( 0.\bar{6}\)?

\( \large \dfrac{4}{6}\) Hint: \( 0.\bar{6}=\dfrac{2}{3}=\dfrac{4}{6}\) | |

\( \large \dfrac{3}{5}\) Hint: This is equal to 0.6, without the repeating decimal. Answer is equivalent to choice c, which is another way to tell that it's wrong. | |

\( \large \dfrac{6}{10}\) Hint: This is equal to 0.6, without the repeating decimal. Answer is equivalent to choice b, which is another way to tell that it's wrong. | |

\( \large \dfrac{1}{6}\) Hint: This is less than a half, and \( 0.\bar{6}\) is greater than a half. |

Question 11 |

#### Use the samples of a student’s work below to answer the question that follows:

#### This student divides fractions by first finding a common denominator, then dividing the numerators.

\( \large \dfrac{2}{3} \div \dfrac{3}{4} \longrightarrow \dfrac{8}{12} \div \dfrac{9}{12} \longrightarrow 8 \div 9 = \dfrac {8}{9}\)\( \large \dfrac{2}{5} \div \dfrac{7}{20} \longrightarrow \dfrac{8}{20} \div \dfrac{7}{20} \longrightarrow 8 \div 7 = \dfrac {8}{7}\)

\( \large \dfrac{7}{6} \div \dfrac{3}{4} \longrightarrow \dfrac{14}{12} \div \dfrac{9}{12} \longrightarrow 14 \div 9 = \dfrac {14}{9}\)

#### Which of the following best describes the mathematical validity of the algorithm the student is using?

## It is not valid. Common denominators are for adding and subtracting fractions, not for dividing them.Hint: Don't be so rigid! Usually there's more than one way to do something in math. | |

## It got the right answer in these three cases, but it isn’t valid for all rational numbers.Hint: Did you try some other examples? What makes you say it's not valid? | |

## It is valid if the rational numbers in the division problem are in lowest terms and the divisor is not zero.Hint: Lowest terms doesn't affect this problem at all. | |

## It is valid for all rational numbers, as long as the divisor is not zero.Hint: When we have common denominators, the problem is in the form a/b divided by c/b, and the answer is a/c, as the student's algorithm predicts. |

Question 12 |

#### Which of the graphs below represent functions?

**I.**

**II.**

**III.**

**IV.**

## I and IV only.Hint: There are vertical lines that go through 2 points in IV . | |

## I and III only.Hint: Even though III is not continuous, it's still a function (assuming that vertical lines between the "steps" do not go through 2 points). | |

## II and III only.Hint: Learn about the vertical line test. | |

## I, II, and IV only.Hint: There are vertical lines that go through 2 points in II. |

Question 13 |

#### The letters A, B, and C represent digits (possibly equal) in the twelve digit number x=111,111,111,ABC. For which values of A, B, and C is x divisible by 40?

\( \large A = 3, B = 2, C=0\) Hint: Note that it doesn't matter what the first 9 digits are, since 1000 is divisible by 40, so DEF,GHI,JKL,000 is divisible by 40 - we need to check the last 3. | |

\( \large A = 0, B = 0, C=4\) Hint: Not divisible by 10, since it doesn't end in 0. | |

\( \large A = 4, B = 2, C=0\) Hint: Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 420 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 18, which is not divisible by 8. | |

\( \large A =1, B=0, C=0\) Hint: Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 100 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 4, which is not divisible by 8. |

Question 14 |

#### Which of the following is equivalent to

#### \( \large A-B+C\div D\times E\)?

\( \large A-B-\dfrac{C}{DE}
\) Hint: In the order of operations, multiplication and division have the same priority, so do them left to right; same with addition and subtraction. | |

\( \large A-B+\dfrac{CE}{D}\) Hint: In practice, you're better off using parentheses than writing an expression like the one in the question. The PEMDAS acronym that many people memorize is misleading. Multiplication and division have equal priority and are done left to right. They have higher priority than addition and subtraction. Addition and subtraction also have equal priority and are done left to right. | |

\( \large \dfrac{AE-BE+CE}{D}\) Hint: Use order of operations, don't just compute left to right. | |

\( \large A-B+\dfrac{C}{DE}\) Hint: In the order of operations, multiplication and division have the same priority, so do them left to right |

Question 15 |

#### Which of the lists below is in order from least to greatest value?

\( \large -0.044,\quad -0.04,\quad 0.04,\quad 0.044\) Hint: These are easier to compare if you add trailing zeroes (this is finding a common denominator) -- all in thousandths, -0.044, -0.040,0 .040, 0.044. The middle two numbers, -0.040 and 0.040 can be modeled as owing 4 cents and having 4 cents. The outer two numbers are owing or having a bit more. | |

\( \large -0.04,\quad -0.044,\quad 0.044,\quad 0.04\) Hint: 0.04=0.040, which is less than 0.044. | |

\( \large -0.04,\quad -0.044,\quad 0.04,\quad 0.044\) Hint: -0.04=-0.040, which is greater than \(-0.044\). | |

\( \large -0.044,\quad -0.04,\quad 0.044,\quad 0.04\) Hint: 0.04=0.040, which is less than 0.044. |

Question 16 |

#### Which of the following is an irrational number?

\( \large \sqrt[3]{8}\) Hint: This answer is the cube root of 8. Since 2 x 2 x 2 =8, this is equal to 2, which is rational because 2 = 2/1. | |

\( \large \sqrt{8}\) Hint: It is not trivial to prove that this is irrational, but you can get this answer by eliminating the other choices. | |

\( \large \dfrac{1}{8}\) Hint: 1/8 is the RATIO of two integers, so it is rational. | |

\( \large -8\) Hint: Negative integers are also rational, -8 = -8/1, a ratio of integers. |

Question 17 |

#### Use the problem below to answer the question that follows:

#### T shirts are on sale for 20% off. Tasha paid $8.73 for a shirt. What is the regular price of the shirt? There is no tax on clothing purchases under $175.

#### Let p represent the regular price of these t-shirt. Which of the following equations is correct?

\( \large 0.8p=\$8.73\) Hint: 80% of the regular price = $8.73. | |

\( \large \$8.73+0.2*\$8.73=p\) Hint: The 20% off was off of the ORIGINAL price, not off the $8.73 (a lot of people make this mistake). Plus this is the same equation as in choice c. | |

\( \large 1.2*\$8.73=p\) Hint: The 20% off was off of the ORIGINAL price, not off the $8.73 (a lot of people make this mistake). Plus this is the same equation as in choice b. | |

\( \large p-0.2*\$8.73=p\) Hint: Subtract p from both sides of this equation, and you have -.2 x 8.73 =0. |

Question 18 |

#### What set of transformations will transform the leftmost image into the rightmost image?

## A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.Hint: Part of the figure would move below the x-axis with these transformations. | |

## A translation 3 units up, followed by a reflection about the line y=x.Hint: See what happens to the point (5,1) under this set of transformations. | |

## A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up. | |

## A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.Hint: See what happens to the point (3,3) under this set of transformations. |

Question 19 |

#### Use the four figures below to answer the question that follows:

#### How many of the figures pictured above have at least one line of reflective symmetry?

\( \large 1\) | |

\( \large 2\) Hint: The ellipse has 2 lines of reflective symmetry (horizontal and vertical, through the center) and the triangle has 3. The other two figures have rotational symmetry, but not reflective symmetry. | |

\( \large 3\) | |

\( \large 4\) Hint: All four have rotational symmetry, but not reflective symmetry. |

Question 20 |

#### Below are four inputs and outputs for a function machine representing the function A:

#### Which of the following equations could also represent A for the values shown?

\( \large A(n)=n+4\) Hint: For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= -1 would output 3, not 0 as the machine does. | |

\( \large A(n)=n+2\) Hint: For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 4, not 6 as the machine does. | |

\( \large A(n)=2n+2\) Hint: Simply plug in each of the four function machine input values, and see that the equation produces the correct output, e.g. A(2)=6, A(-1)=0, etc. | |

\( \large A(n)=2\left( n+2 \right)\) Hint: For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 8, not 6 as the machine does. |

Question 21 |

#### Four children randomly line up, single file. What is the probability that they are in height order, with the shortest child in front? All of the children are different heights.

\( \large \dfrac{1}{4}\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{256}
\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{16}\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{24}\) Hint: The number of ways for the children to line up is \(4!=4 \times 3 \times 2 \times 1 =24\) -- there are 4 choices for who is first in line, then 3 for who is second, etc. Only one of these lines has the children in the order specified. |

Question 22 |

#### Aya and Kendra want to estimate the height of a tree. On a sunny day, Aya measures Kendra’s shadow as 3 meters long, and Kendra measures the tree’s shadow as 15 meters long. Kendra is 1.5 meters tall. How tall is the tree?

## 7.5 metersHint: Here is a picture, note that the large and small right triangles are similar: One way to do the problem is to note that there is a dilation (scale) factor of 5 on the shadows, so there must be that factor on the heights too. Another way is to note that the shadows are twice as long as the heights. | |

## 22.5 metersHint: Draw a picture. | |

## 30 metersHint: Draw a picture. | |

## 45 metersHint: Draw a picture. |

Question 23 |

#### Which of the following is equivalent to \( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}?\)

\( \large \dfrac{7}{16}\) Hint: Multiplication comes before addition and subtraction in the order of operations. | |

\( \large \dfrac{1}{2}\) Hint: Addition and subtraction are of equal priority in the order of operations -- do them left to right. | |

\( \large \dfrac{3}{4}\) Hint: \( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}\)=\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}+-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}\) | |

\( \large \dfrac{3}{16}\) Hint: Multiplication comes before addition and subtraction in the order of operations. |

Question 24 |

#### A solution requires 4 ml of saline for every 7 ml of medicine. How much saline would be required for 50 ml of medicine?

\( \large 28 \dfrac{4}{7}\) ml Hint: 49 ml of medicine requires 28 ml of saline. The extra ml of saline requires 4 ml saline/ 7 ml medicine = 4/7 ml saline per 1 ml medicine. | |

\( \large 28 \dfrac{1}{4}\) ml Hint: 49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require? | |

\( \large 28 \dfrac{1}{7}\) ml Hint: 49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require? | |

\( \large 87.5\) ml Hint: 49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require? |

Question 25 |

#### Use the graph below to answer the question that follows:

#### The graph above represents the equation \( \large 3x+Ay=B\), where A and B are integers. What are the values of A and B?

\( \large A = -2, B= 6\) Hint: Plug in (2,0) to get B=6, then plug in (0,-3) to get A=-2. | |

\( \large A = 2, B = 6\) Hint: Try plugging (0,-3) into this equation. | |

\( \large A = -1.5, B=-3\) Hint: The problem said that A and B were integers and -1.5 is not an integer. Don't try to use slope-intercept form. | |

\( \large A = 2, B = -3\) Hint: Try plugging (2,0) into this equation. |

Question 26 |

#### Which of the following is equal to one million three hundred thousand?

\(\large1.3\times {{10}^{6}}\)
| |

\(\large1.3\times {{10}^{9}}\)
Hint: That's one billion three hundred million. | |

\(\large1.03\times {{10}^{6}}\)
Hint: That's one million thirty thousand. | |

\(\large1.03\times {{10}^{9}}\) Hint: That's one billion thirty million |

Question 27 |

#### Which of the following is the equation of a linear function?

\( \large y={{x}^{2}}+2x+7\) Hint: This is a quadratic function. | |

\( \large y={{2}^{x}}\) Hint: This is an exponential function. | |

\( \large y=\dfrac{15}{x}\) Hint: This is an inverse function. | |

\( \large y=x+(x+4)\) Hint: This is a linear function, y=2x+4, it's graph is a straight line with slope 2 and y-intercept 4. |

Question 28 |

#### If two fair coins are flipped, what is the probability that one will come up heads and the other tails?

\( \large \dfrac{1}{4}\) Hint: Think of the coins as a penny and a dime, and list all possibilities. | |

\( \large \dfrac{1}{3} \) Hint: This is a very common misconception. There are three possible outcomes -- both heads, both tails, and one of each -- but they are not equally likely. Think of the coins as a penny and a dime, and list all possibilities. | |

\( \large \dfrac{1}{2}\) Hint: The possibilities are HH, HT, TH, TT, and all are equally likely. Two of the four have one of each coin, so the probability is 2/4=1/2. | |

\( \large \dfrac{3}{4}\) Hint: Think of the coins as a penny and a dime, and list all possibilities. |

Question 29 |

#### The American’s with Disabilties Act (ADA) regulations state that the maximum slope for a wheelchair ramp in new construction is 1:12, although slopes between 1:16 and 1:20 are preferred. The maximum rise for any run is 30 inches. The graph below shows the rise and runs of four different wheelchair ramps. Which ramp is in compliance with the ADA regulations for new construction?

## AHint: Rise is more than 30 inches. | |

## BHint: Run is almost 24 feet, so rise can be almost 2 feet. | |

## CHint: Run is 12 feet, so rise can be at most 1 foot. | |

## DHint: Slope is 1:10 -- too steep. |

Question 30 |

#### Use the graph below to answer the question that follows.

#### If the polygon shown above is reflected about the y axis and then rotated 90 degrees clockwise about the origin, which of the following graphs is the result?

Hint: Try following the point (1,4) to see where it goes after each transformation. | |

Hint: Make sure you're reflecting in the correct axis. | |

Hint: Make sure you're rotating the correct direction. |

Question 31 |

#### The first histogram shows the average life expectancies for women in different countries in Africa in 1998; the second histogram gives similar data for Europe:

#### How much bigger is the range of the data for Africa than the range of the data for Europe?

## 0 yearsHint: Range is the maximum life expectancy minus the minimum life expectancy. | |

## 12 yearsHint: Are you subtracting frequencies? Range is about values of the data, not frequency. | |

## 18 yearsHint: It's a little hard to read the graph, but it doesn't matter if you're consistent. It looks like the range for Africa is 80-38= 42 years and for Europe is 88-64 = 24; 42-24=18. | |

## 42 yearsHint: Read the question more carefully. |

Question 32 |

#### Use the solution procedure below to answer the question that follows:

#### \( \large {\left( x+3 \right)}^{2}=10\)

#### \( \large \left( x+3 \right)\left( x+3 \right)=10\)

#### \( \large {x}^{2}+9=10\)

#### \( \large {x}^{2}+9-9=10-9\)

#### \( \large {x}^{2}=1\)

#### \( \large x=1\text{ or }x=-1\)

#### Which of the following is incorrect in the procedure shown above?

## The commutative property is used incorrectly.Hint: The commutative property is \(a+b=b+a\) or \(ab=ba\). | |

## The associative property is used incorrectly.Hint: The associative property is \(a+(b+c)=(a+b)+c\) or
\(a \times (b \times c)=(a \times b) \times c\). | |

## Order of operations is done incorrectly. | |

## The distributive property is used incorrectly.Hint: \((x+3)(x+3)=x(x+3)+3(x+3)\)=\(x^2+3x+3x+9.\) |

Question 33 |

#### Exactly one of the numbers below is a prime number. Which one is it?

\( \large511 \) Hint: Divisible by 7. | |

\( \large517\) Hint: Divisible by 11. | |

\( \large519\) Hint: Divisible by 3. | |

\( \large521\) |

Question 34 |

#### The window glass below has the shape of a semi-circle on top of a square, where the side of the square has length x. It was cut from one piece of glass.

#### What is the perimeter of the window glass?

\( \large 3x+\dfrac{\pi x}{2}\) Hint: By definition, \(\pi\) is the ratio of the circumference of a circle to its diameter; thus the circumference is \(\pi d\). Since we have a semi-circle, its perimeter is \( \dfrac{1}{2} \pi x\). Only 3 sides of the square contribute to the perimeter. | |

\( \large 3x+2\pi x\) Hint: Make sure you know how to find the circumference of a circle. | |

\( \large 3x+\pi x\) Hint: Remember it's a semi-circle, not a circle. | |

\( \large 4x+2\pi x\) Hint: Only 3 sides of the square contribute to the perimeter. |

Question 35 |

#### Use the table below to answer the question that follows:

#### Each number in the table above represents a value W that is determined by the values of x and y. For example, when x=3 and y=1, W=5. What is the value of W when x=9 and y=14? Assume that the patterns in the table continue as shown.

\( \large W=-5\) Hint: When y is even, W is even. | |

\( \large W=4\) Hint: Note that when x increases by 1, W increases by 2, and when y increases by 1, W decreases by 1. At x=y=0, W=0, so at x=9, y=14, W has increased by \(9 \times 2\) and decreased by 14, or W=18-14=4. | |

\( \large W=6\) Hint: Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0. | |

\( \large W=32\) Hint: Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0. |

Question 36 |

#### Here is a student’s work solving an equation:

#### \( x-4=-2x+6\)

#### \( x-4+4=-2x+6+4\)

#### \( x=-2x+10\)

#### \( x-2x=10\)

#### \( x=10\)

#### Which of the following statements is true?

## The student’s solution is correct.Hint: Try plugging into the original solution. | |

## The student did not correctly use properties of equality.Hint: After \( x=-2x+10\), the student subtracted 2x on the left and added 2x on the right. | |

## The student did not correctly use the distributive property.Hint: Distributive property is \(a(b+c)=ab+ac\). | |

## The student did not correctly use the commutative property.Hint: Commutative property is \(a+b=b+a\) or \(ab=ba\). |

Question 37 |

#### Elena is going to use a calculator to check whether or not 267 is prime. She will pick certain divisors, and then find 267 divided by each, and see if she gets a whole number. If she never gets a whole number, then she’s found a prime. Which numbers does Elena NEED to check before she can stop checking and be sure she has a prime?

## All natural numbers from 2 to 266.Hint: She only needs to check primes -- checking the prime factors of any composite is enough to look for divisors. As a test taking strategy, the other three choices involve primes, so worth thinking about. | |

## All primes from 2 to 266 .Hint: Remember, factors come in pairs (except for square root factors), so she would first find the smaller of the pair and wouldn't need to check the larger. | |

## All primes from 2 to 133 .Hint: She doesn't need to check this high. Factors come in pairs, and something over 100 is going to be paired with something less than 3, so she will find that earlier. | |

## All primes from \( \large 2\) to \( \large \sqrt{267}\).Hint: \(\sqrt{267} \times \sqrt{267}=267\). Any other pair of factors will have one factor less than \( \sqrt{267}\) and one greater, so she only needs to check up to \( \sqrt{267}\). |

Question 38 |

#### A teacher has a list of all the countries in the world and their populations in March 2012. She is going to have her students use technology to compute the mean and median of the numbers on the list. Which of the following statements is true?

## The teacher can be sure that the mean and median will be the same without doing any computation.Hint: Does this make sense? How likely is it that the mean and median of any large data set will be the same? | |

## The teacher can be sure that the mean is bigger than the median without doing any computation.Hint: This is a skewed distribution, and very large countries like China and India contribute huge numbers to the mean, but are counted the same as small countries like Luxembourg in the median (the same thing happens w/data on salaries, where a few very high income people tilt the mean -- that's why such data is usually reported as medians). | |

## The teacher can be sure that the median is bigger than the mean without doing any computation.Hint: Think about a set of numbers like 1, 2, 3, 4, 10,000 -- how do the mean/median compare? How might that relate to countries of the world? | |

## There is no way for the teacher to know the relative size of the mean and median without computing them.Hint: Knowing the shape of the distribution of populations does give us enough info to know the relative size of the mean and median, even without computing them. |

Question 39 |

#### What is the mathematical name of the three-dimensional polyhedron depicted below?

## TetrahedronHint: All the faces of a tetrahedron are triangles. | |

## Triangular PrismHint: A prism has two congruent, parallel bases, connected by parallelograms (since this is a right prism, the parallelograms are rectangles). | |

## Triangular PyramidHint: A pyramid has one base, not two. | |

## TrigonHint: A trigon is a triangle (this is not a common term). |

Question 40 |

#### Which of the following nets will not fold into a cube?

Hint: If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate). | |

Hint: If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate). | |

Hint: If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate). |

Question 41 |

#### Which of the following is not possible?

## An equiangular triangle that is not equilateral.Hint: The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral. | |

## An equiangular quadrilateral that is not equilateral.Hint: A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length). | |

## An equilateral quadrilateral that is not equiangular.Hint: This rhombus has equal sides, but it doesn't have equal angles: | |

## An equiangular hexagon that is not equilateral.Hint: This hexagon has equal angles, but it doesn't have equal sides: |

Question 42 |

#### In the triangle below, \(\overline{AC}\cong \overline{AD}\cong \overline{DE}\) and \(m\angle CAD=100{}^\circ \). What is \(m\angle DAE\)?

\( \large 20{}^\circ \) Hint: Angles ACD and ADC are congruent since they are base angles of an isosceles triangle. Since the angles of a triangle sum to 180, they sum to 80, and they are 40 deg each. Thus angle ADE is 140 deg, since it makes a straight line with angle ADC. Angles DAE and DEA are base angles of an isosceles triangle and thus congruent-- they sum to 40 deg, so are 20 deg each. | |

\( \large 25{}^\circ \) Hint: If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal. | |

\( \large 30{}^\circ \) Hint: If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal. | |

\( \large 40{}^\circ \) Hint: Make sure you're calculating the correct angle. |

Question 43 |

#### A family went on a long car trip. Below is a graph of how far they had driven at each hour.

#### Which of the following is closest to their average speed driving on the trip?

\( \large d=20t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. | |

\( \large d=30t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. | |

\( \large d=40t\) | |

\( \large d=50t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. |

Question 44 |

#### A homeowner is planning to tile the kitchen floor with tiles that measure 6 inches by 8 inches. The kitchen floor is a rectangle that measures 10 ft by 12 ft, and there are no gaps between the tiles. How many tiles does the homeowner need?

## 30Hint: The floor is 120 sq feet, and the tiles are smaller than 1 sq foot. Also, remember that 1 sq foot is 12 \(\times\) 12=144 sq inches. | |

## 120Hint: The floor is 120 sq feet, and the tiles are smaller than 1 sq foot. | |

## 300Hint: Recheck your calculations. | |

## 360Hint: One way to do this is to note that 6 inches = 1/2 foot and 8 inches = 2/3 foot, so the area of each tile is 1/2 \(\times\) 2/3=1/3 sq foot, or each square foot of floor requires 3 tiles. The area of the floor is 120 square feet. Note that the tiles would fit evenly oriented in either direction, parallel to the walls. |

Question 45 |

#### What is the length of side \(\overline{BD}\) in the triangle below, where \(\angle DBA\) is a right angle?

\( \large 1\) Hint: Use the Pythagorean Theorem. | |

\( \large \sqrt{5}\) Hint: \(2^2+e^2=3^2\) or \(4+e^2=9;e^2=5; e=\sqrt{5}\). | |

\( \large \sqrt{13}\) Hint: e is not the hypotenuse. | |

\( \large 5\) Hint: Use the Pythagorean Theorem. |

List |

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed). General comments can be left here.