Hints will display for most wrong answers; explanations for most right answers. You can attempt a question multiple times; it will only be scored correct if you get it right the first time. To see ten new questions, reload the page.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test. Some of the sample questions were more convoluted than I could bear to write. See terms of use. See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

## MTEL General Curriculum Mathematics Practice

Question 1 |

#### P is a prime number that divides 240. Which of the following must be true?

## P divides 30Hint: 2, 3, and 5 are the prime factors of 240, and all divide 30. | |

## P divides 48Hint: P=5 doesn't work. | |

## P divides 75Hint: P=2 doesn't work. | |

## P divides 80Hint: P=3 doesn't work. |

Question 2 |

#### The letters A, B, and C represent digits (possibly equal) in the twelve digit number x=111,111,111,ABC. For which values of A, B, and C is x divisible by 40?

\( \large A = 3, B = 2, C=0\) Hint: Note that it doesn't matter what the first 9 digits are, since 1000 is divisible by 40, so DEF,GHI,JKL,000 is divisible by 40 - we need to check the last 3. | |

\( \large A = 0, B = 0, C=4\) Hint: Not divisible by 10, since it doesn't end in 0. | |

\( \large A = 4, B = 2, C=0\) Hint: Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 420 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 18, which is not divisible by 8. | |

\( \large A =1, B=0, C=0\) Hint: Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 100 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 4, which is not divisible by 8. |

Question 3 |

#### The speed of sound in dry air at 68 degrees F is 343.2 meters per second. Which of the expressions below could be used to compute the number of kilometers that a sound wave travels in 10 minutes (in dry air at 68 degrees F)?

\( \large 343.2\times 60\times 10\) Hint: In kilometers, not meters. | |

\( \large 343.2\times 60\times 10\times \dfrac{1}{1000}\) Hint: Units are meters/sec \(\times\) seconds/minute \(\times\) minutes \(\times\) kilometers/meter, and the answer is in kilometers. | |

\( \large 343.2\times \dfrac{1}{60}\times 10\) Hint: Include units and make sure answer is in kilometers. | |

\( \large 343.2\times \dfrac{1}{60}\times 10\times \dfrac{1}{1000}\) Hint: Include units and make sure answer is in kilometers. |

Question 4 |

#### Which of the following nets will not fold into a cube?

Hint: If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate). | |

Hint: If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate). | |

Hint: If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate). |

Question 5 |

#### Use the samples of a student€™s work below to answer the question that follows:

\( \large \dfrac{2}{3}\times \dfrac{3}{4}=\dfrac{4\times 2}{3\times 3}=\dfrac{8}{9}\)\( \large \dfrac{2}{5}\times \dfrac{7}{7}=\dfrac{7\times 2}{5\times 7}=\dfrac{2}{5}\)

\( \large \dfrac{7}{6}\times \dfrac{3}{4}=\dfrac{4\times 7}{6\times 3}=\dfrac{28}{18}=\dfrac{14}{9}\)

#### Which of the following best describes the mathematical validity of the algorithm the student is using?

## It is not valid. It never produces the correct answer.Hint: In the middle example,the answer is correct. | |

## It is not valid. It produces the correct answer in a few special cases, but it‘s still not a valid algorithm.Hint: Note that this algorithm gives a/b divided by c/d, not a/b x c/d, but some students confuse multiplication and cross-multiplication. If a=0 or if c/d =1, division and multiplication give the same answer. | |

## It is valid if the rational numbers in the multiplication problem are in lowest terms.Hint: Lowest terms is irrelevant. | |

## It is valid for all rational numbers.Hint: Can't be correct as the first and last examples have the wrong answers. |

Question 6 |

#### Which of the lists below is in order from least to greatest value?

\( \large -0.044,\quad -0.04,\quad 0.04,\quad 0.044\) Hint: These are easier to compare if you add trailing zeroes (this is finding a common denominator) -- all in thousandths, -0.044, -0.040,0 .040, 0.044. The middle two numbers, -0.040 and 0.040 can be modeled as owing 4 cents and having 4 cents. The outer two numbers are owing or having a bit more. | |

\( \large -0.04,\quad -0.044,\quad 0.044,\quad 0.04\) Hint: 0.04=0.040, which is less than 0.044. | |

\( \large -0.04,\quad -0.044,\quad 0.04,\quad 0.044\) Hint: -0.04=-0.040, which is greater than \(-0.044\). | |

\( \large -0.044,\quad -0.04,\quad 0.044,\quad 0.04\) Hint: 0.04=0.040, which is less than 0.044. |

Question 7 |

#### The equation \( \large F=\frac{9}{5}C+32\) is used to convert a temperature measured in Celsius to the equivalent Farentheit temperature.

#### A patient€™s temperature increased by 1.5° Celcius. By how many degrees Fahrenheit did her temperature increase?

## 1.5°Hint: Celsius and Fahrenheit don't increase at the same rate. | |

## 1.8°Hint: That's how much the Fahrenheit temp increases when the Celsius temp goes up by 1 degree. | |

## 2.7°Hint: Each degree increase in Celsius corresponds to a \(\dfrac{9}{5}=1.8\) degree increase in Fahrenheit. Thus the increase is 1.8+0.9=2.7. | |

## Not enough information.Hint: A linear equation has constant slope, which means that every increase of the same amount in one variable, gives a constant increase in the other variable. It doesn't matter what temperature the patient started out at. |

Question 8 |

I. \(\large \dfrac{1}{2}+\dfrac{1}{3}\) | II. \( \large .400000\) | III. \(\large\dfrac{1}{5}+\dfrac{1}{5}\) |

IV. \( \large 40\% \) | V. \( \large 0.25 \) | VI. \(\large\dfrac{14}{35}\) |

#### Which of the lists below includes all of the above expressions that are equivalent to \( \dfrac{2}{5}\)?

## I, III, V, VIHint: I and V are not at all how fractions and decimals work. | |

## III, VIHint: These are right, but there are more. | |

## II, III, VIHint: These are right, but there are more. | |

## II, III, IV, VI |

Question 9 |

#### Use the expression below to answer the question that follows.

#### \( \large 3\times {{10}^{4}}+2.2\times {{10}^{2}}\)

#### Which of the following is closest to the expression above?

## Five millionHint: Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values. | |

## Fifty thousandHint: Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values. | |

## Three millionHint: Don't add the exponents. | |

## Thirty thousandHint: \( 3\times {{10}^{4}} = 30,000;\) the other term is much smaller and doesn't change the estimate. |

Question 10 |

#### Which of the following sets of polygons can be assembled to form a pentagonal pyramid?

## 2 pentagons and 5 rectangles.Hint: These can be assembled to form a pentagonal prism, not a pentagonal pyramid. | |

## 1 square and 5 equilateral triangles.Hint: You need a pentagon for a pentagonal pyramid. | |

## 1 pentagon and 5 isosceles triangles. | |

## 1 pentagon and 10 isosceles triangles. |

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed). General comments can be left here.