## 10 Random Questions

Hints will display for most wrong answers; explanations for most right answers. You can attempt a question multiple times; it will only be scored correct if you get it right the first time. To see ten new questions, reload the page.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test. Some of the sample questions were more convoluted than I could bear to write. See terms of use. See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

## MTEL General Curriculum Mathematics Practice

Question 1 |

#### P is a prime number that divides 240. Which of the following must be true?

## P divides 30Hint: 2, 3, and 5 are the prime factors of 240, and all divide 30. | |

## P divides 48Hint: P=5 doesn't work. | |

## P divides 75Hint: P=2 doesn't work. | |

## P divides 80Hint: P=3 doesn't work. |

Question 2 |

#### Below are front, side, and top views of a three-dimensional solid.

#### Which of the following could be the solid shown above?

## A sphereHint: All views would be circles. | |

## A cylinder | |

## A coneHint: Two views would be triangles, not rectangles. | |

## A pyramidHint: How would one view be a circle? |

Question 3 |

#### Which of the numbers below is a fraction equivalent to \( 0.\bar{6}\)?

\( \large \dfrac{4}{6}\) Hint: \( 0.\bar{6}=\dfrac{2}{3}=\dfrac{4}{6}\) | |

\( \large \dfrac{3}{5}\) Hint: This is equal to 0.6, without the repeating decimal. Answer is equivalent to choice c, which is another way to tell that it's wrong. | |

\( \large \dfrac{6}{10}\) Hint: This is equal to 0.6, without the repeating decimal. Answer is equivalent to choice b, which is another way to tell that it's wrong. | |

\( \large \dfrac{1}{6}\) Hint: This is less than a half, and \( 0.\bar{6}\) is greater than a half. |

Question 4 |

#### Here is a student’s work on several multiplication problems:

#### For which of the following problems is this student most likely to get the correct solution, even though he is using an incorrect algorithm?

## 58 x 22Hint: This problem involves regrouping, which the student does not do correctly. | |

## 16 x 24Hint: This problem involves regrouping, which the student does not do correctly. | |

## 31 x 23Hint: There is no regrouping with this problem. | |

## 141 x 32Hint: This problem involves regrouping, which the student does not do correctly. |

Question 5 |

#### Which of the following inequalities describes all values of x with \(\large \dfrac{x}{2}\le \dfrac{x}{3}\)?

\( \large x < 0\) Hint: If x =0, then x/2 = x/3, so this answer can't be correct. | |

\( \large x \le 0\) | |

\( \large x > 0\) Hint: If x =0, then x/2 = x/3, so this answer can't be correct. | |

\( \large x \ge 0\) Hint: Try plugging in x = 6. |

Question 6 |

#### The table below gives the result of a survey at a college, asking students whether they were residents or commuters:

#### Based on the above data, what is the probability that a randomly chosen commuter student is a junior or a senior?

\( \large \dfrac{34}{43}\) | |

\( \large \dfrac{34}{71}\) Hint: This is the probability that a randomly chosen junior or senior is a commuter student. | |

\( \large \dfrac{34}{147}\) Hint: This is the probability that a randomly chosen student is a junior or senior who is a commuter. | |

\( \large \dfrac{71}{147}\) Hint: This is the probability that a randomly chosen student is a junior or a senior. |

Question 7 |

#### Which of the following nets will not fold into a cube?

Hint: If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate). | |

Hint: If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate). | |

Hint: If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate). |

Question 8 |

#### In each expression below N represents a negative integer. Which expression could have a negative value?

\( \large {{N}^{2}}\) Hint: Squaring always gives a non-negative value. | |

\( \large 6-N\) Hint: A story problem for this expression is, if it was 6 degrees out at noon and N degrees out at sunrise, by how many degrees did the temperature rise by noon? Since N is negative, the answer to this question has to be positive, and more than 6. | |

\( \large -N\) Hint: If N is negative, then -N is positive | |

\( \large 6+N\) Hint: For example, if \(N=-10\), then \(6+N = -4\) |

Question 9 |

#### The equation \( \large F=\frac{9}{5}C+32\) is used to convert a temperature measured in Celsius to the equivalent Farentheit temperature.

#### A patient’s temperature increased by 1.5° Celcius. By how many degrees Fahrenheit did her temperature increase?

## 1.5°Hint: Celsius and Fahrenheit don't increase at the same rate. | |

## 1.8°Hint: That's how much the Fahrenheit temp increases when the Celsius temp goes up by 1 degree. | |

## 2.7°Hint: Each degree increase in Celsius corresponds to a \(\dfrac{9}{5}=1.8\) degree increase in Fahrenheit. Thus the increase is 1.8+0.9=2.7. | |

## Not enough information.Hint: A linear equation has constant slope, which means that every increase of the same amount in one variable, gives a constant increase in the other variable. It doesn't matter what temperature the patient started out at. |

Question 10 |

#### A map has a scale of 3 inches = 100 miles. Cities A and B are 753 miles apart. Let d be the distance between the two cities on the map. Which of the following is not correct?

\( \large \dfrac{3}{100}=\dfrac{d}{753}\) Hint: Units on both side are inches/mile, and both numerators and denominators correspond -- this one is correct. | |

\( \large \dfrac{3}{100}=\dfrac{753}{d}\) Hint: Unit on the left is inches per mile, and on the right is miles per inch. The proportion is set up incorrectly (which is what we wanted). Another strategy is to notice that one of A or B has to be the answer because they cannot both be correct proportions. Then check that cross multiplying on A gives part D, so B is the one that is different from the other 3. | |

\( \large \dfrac{3}{d}=\dfrac{100}{753}\) Hint: Unitless on each side, as inches cancel on the left and miles on the right. Numerators correspond to the map, and denominators to the real life distances -- this one is correct. | |

\( \large 100d=3\cdot 753\) Hint: This is equivalent to part A. |

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed). General comments can be left here.