Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.  To see five new questions, reload the page.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice

Question 1

Which of the lists below is in order from least to greatest value?

A
\( \large \dfrac{1}{2},\quad \dfrac{1}{3},\quad \dfrac{1}{4},\quad \dfrac{1}{5}\)
Hint:
This is ordered from greatest to least.
B
\( \large \dfrac{1}{3},\quad \dfrac{2}{7},\quad \dfrac{3}{8},\quad \dfrac{4}{11}\)
Hint:
1/3 = 2/6 is bigger than 2/7.
C
\( \large \dfrac{1}{4},\quad \dfrac{2}{5},\quad \dfrac{2}{3},\quad \dfrac{4}{5}\)
Hint:
One way to look at this: 1/4 and 2/5 are both less than 1/2, and 2/3 and 4/5 are both greater than 1/2. 1/4 is 25% and 2/5 is 40%, so 2/5 is greater. The distance from 2/3 to 1 is 1/3 and from 4/5 to 1 is 1/5, and 1/5 is less than 1/3, so 4/5 is bigger.
D
\( \large \dfrac{7}{8},\quad \dfrac{6}{7},\quad \dfrac{5}{6},\quad \dfrac{4}{5}\)
Hint:
This is in order from greatest to least.
Question 1 Explanation: 
Topic: Ordering Fractions (Objective 0017)
Question 2

The chart below gives percentiles for the number of sit-ups that boys of various ages can do in 60 seconds (source , June 24, 2011)

 

Which of the following statements can be inferred from the above chart?

A

95% of 12 year old boys can do 56 sit-ups in 60 seconds.

Hint:
The 95th percentile means that 95% of scores are less than or equal to 56, and 5% are greater than or equal to 56.
B

At most 25% of 7 year old boys can do 19 or more sit-ups in 60 seconds.

Hint:
The 25th percentile means that 25% of scores are less than or equal to 19, and 75% are greater than or equal to 19.
C

Half of all 13 year old boys can do less than 41 sit-ups in 60 seconds and half can do more than 41 sit-ups in 60 seconds.

Hint:
Close, but not quite. There's no accounting for boys who can do exactly 41 sit ups. Look at these data: 10, 20, 41, 41, 41, 41, 50, 60, 90. The median is 41, but more than half can do 41 or more.
D

At least 75% of 16 year old boys can only do 51 or fewer sit-ups in 60 seconds.

Hint:
The "at least" is necessary due to duplicates. Suppose the data were 10, 20, 51, 51. The 75th percentile is 51, but 100% of the boys can only do 51 or fewer situps.
Question 2 Explanation: 
Topic: Analyze and interpret various graphic and nongraphic data representations (e.g., frequency distributions, percentiles) (Objective 0025).
Question 3

If  x  is an integer, which of the following must also be an integer?

A
\( \large \dfrac{x}{2}\)
Hint:
If x is odd, then \( \dfrac{x}{2} \) is not an integer, e.g. 3/2 = 1.5.
B
\( \large \dfrac{2}{x}\)
Hint:
Only an integer if x = -2, -1, 1, or 2.
C
\( \large-x\)
Hint:
-1 times any integer is still an integer.
D
\(\large\sqrt{x}\)
Hint:
Usually not an integer, e.g. \( \sqrt{2} \approx 1.414 \).
Question 3 Explanation: 
Topic: Integers (Objective 0016)
Question 4

Which of the following is equal to one million three hundred thousand?

A
\(\large1.3\times {{10}^{6}}\)
B
\(\large1.3\times {{10}^{9}}\)
Hint:
That's one billion three hundred million.
C
\(\large1.03\times {{10}^{6}}\)
Hint:
That's one million thirty thousand.
D
\(\large1.03\times {{10}^{9}}\)
Hint:
That's one billion thirty million
Question 4 Explanation: 
Topic: Scientific Notation (Objective 0016)
Question 5

Four children randomly line up, single file.  What is the probability that they are in height order, with the shortest child in front?   All of the children are different heights.

A
\( \large \dfrac{1}{4}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
B
\( \large \dfrac{1}{256} \)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
C
\( \large \dfrac{1}{16}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
D
\( \large \dfrac{1}{24}\)
Hint:
The number of ways for the children to line up is \(4!=4 \times 3 \times 2 \times 1 =24\) -- there are 4 choices for who is first in line, then 3 for who is second, etc. Only one of these lines has the children in the order specified.
Question 5 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
There are 5 questions to complete.

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.