Hints will display for most wrong answers; explanations for most right answers. You can attempt a question multiple times; it will only be scored correct if you get it right the first time. To see ten new questions, reload the page.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test. Some of the sample questions were more convoluted than I could bear to write. See terms of use. See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

## MTEL General Curriculum Mathematics Practice

Question 1 |

#### Which of the following is closest to the height of a college student in centimeters?

## 1.6 cmHint: This is more the height of a Lego toy college student -- less than an inch! | |

## 16 cmHint: Less than knee high on most college students. | |

## 160 cmHint: Remember, a meter stick (a little bigger than a yard stick) is 100 cm. Also good to know is that 4 inches is approximately 10 cm. | |

## 1600 cmHint: This college student might be taller than some campus buildings! |

Question 2 |

#### Here is a student's work on several multiplication problems:

#### For which of the following problems is this student most likely to get the correct solution, even though he is using an incorrect algorithm?

## 58 x 22Hint: This problem involves regrouping, which the student does not do correctly. | |

## 16 x 24Hint: This problem involves regrouping, which the student does not do correctly. | |

## 31 x 23Hint: There is no regrouping with this problem. | |

## 141 x 32Hint: This problem involves regrouping, which the student does not do correctly. |

Question 3 |

#### An above-ground swimming pool is in the shape of a regular hexagonal prism, is one meter high, and holds 65 cubic meters of water. A second pool has a base that is also a regular hexagon, but with sides twice as long as the sides in the first pool. This second pool is also one meter high. How much water will the second pool hold?

\( \large 65\text{ }{{\text{m}}^{3}}\) Hint: A bigger pool would hold more water. | |

\( \large 65\cdot 2\text{ }{{\text{m}}^{3}}\) Hint: Try a simpler example, say doubling the sides of the base of a 1 x 1 x 1 cube. | |

\( \large 65\cdot 4\text{ }{{\text{m}}^{3}}\) Hint: If we think of the pool as filled with 1 x 1 x 1 cubes (and some fractions of cubes), then scaling to the larger pool changes each 1 x 1 x 1 cube to a 2 x 2 x 1 prism, or multiplies volume by 4. | |

\( \large 65\cdot 8\text{ }{{\text{m}}^{3}}\) Hint: Try a simpler example, say doubling the sides of the base of a 1 x 1 x 1 cube. |

Question 4 |

#### Exactly one of the numbers below is a prime number. Which one is it?

\( \large511 \) Hint: Divisible by 7. | |

\( \large517\) Hint: Divisible by 11. | |

\( \large519\) Hint: Divisible by 3. | |

\( \large521\) |

Question 5 |

#### In which table below is y a function of x?

Hint: If x=3, y can have two different values, so it's not a function. | |

Hint: If x=3, y can have two different values, so it's not a function. | |

Hint: If x=1, y can have different values, so it's not a function. | |

Hint: Each value of x always corresponds to the same value of y. |

Question 6 |

#### Use the four figures below to answer the question that follows:

#### How many of the figures pictured above have at least one line of reflective symmetry?

\( \large 1\) | |

\( \large 2\) Hint: The ellipse has 2 lines of reflective symmetry (horizontal and vertical, through the center) and the triangle has 3. The other two figures have rotational symmetry, but not reflective symmetry. | |

\( \large 3\) | |

\( \large 4\) Hint: All four have rotational symmetry, but not reflective symmetry. |

Question 7 |

I. \(\large \dfrac{1}{2}+\dfrac{1}{3}\) | II. \( \large .400000\) | III. \(\large\dfrac{1}{5}+\dfrac{1}{5}\) |

IV. \( \large 40\% \) | V. \( \large 0.25 \) | VI. \(\large\dfrac{14}{35}\) |

#### Which of the lists below includes all of the above expressions that are equivalent to \( \dfrac{2}{5}\)?

## I, III, V, VIHint: I and V are not at all how fractions and decimals work. | |

## III, VIHint: These are right, but there are more. | |

## II, III, VIHint: These are right, but there are more. | |

## II, III, IV, VI |

Question 8 |

#### At a school fundraising event, people can buy a ticket to spin a spinner like the one below. The region that the spinner lands in tells which, if any, prize the person wins.

#### If 240 people buy tickets to spin the spinner, what is the best estimate of the number of keychains that will be given away?

## 40Hint: "Keychain" appears on the spinner twice. | |

## 80Hint: The probability of getting a keychain is 1/3, and so about 1/3 of the time the spinner will win. | |

## 100Hint: What is the probability of winning a keychain? | |

## 120Hint: That would be the answer for getting any prize, not a keychain specifically. |

Question 9 |

#### There are 15 students for every teacher. Let t represent the number of teachers and let s represent the number of students. Which of the following equations is correct?

\( \large t=s+15\) Hint: When there are 2 teachers, how many students should there be? Do those values satisfy this equation? | |

\( \large s=t+15\) Hint: When there are 2 teachers, how many students should there be? Do those values satisfy this equation? | |

\( \large t=15s\) Hint: This is a really easy mistake to make, which comes from transcribing directly from English, "1 teachers equals 15 students." To see that it's wrong, plug in s=2; do you really need 30 teachers for 2 students? To avoid this mistake, insert the word "number," "Number of teachers equals 15 times number of students" is more clearly problematic. | |

\( \large s=15t\) |

Question 10 |

#### Kendra is trying to decide which fraction is greater, \( \dfrac{4}{7}\) or \( \dfrac{5}{8}\). Which of the following answers shows the best reasoning?

## \( \dfrac{4}{7}\) is \( \dfrac{3}{7}\)away from 1, and \( \dfrac{5}{8}\) is \( \dfrac{3}{8}\)away from 1. Since eighth‘s are smaller than seventh‘s, \( \dfrac{5}{8}\) is closer to 1, and is the greater of the two fractions. | |

## \( 7-4=3\) and \( 8-5=3\), so the fractions are equal.Hint: Not how to compare fractions. By this logic, 1/2 and 3/4 are equal, but 1/2 and 2/4 are not. | |

## \( 4\times 8=32\) and \( 7\times 5=35\). Since \( 32<35\) , \( \dfrac{5}{8}<\dfrac{4}{7}\)Hint: Starts out as something that works, but the conclusion is wrong. 4/7 = 32/56 and 5/8 = 35/56. The cross multiplication gives the numerators, and 35/56 is bigger. | |

## \( 4<5\) and \( 7<8\), so \( \dfrac{4}{7}<\dfrac{5}{8}\)Hint: Conclusion is correct, logic is wrong. With this reasoning, 1/2 would be less than 2/100,000. |

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed). General comments can be left here.