Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

Use the four figures below to answer the question that follows:

How many of the figures pictured above have at least one line of reflective symmetry?

A
\( \large 1\)
B
\( \large 2\)
Hint:
The ellipse has 2 lines of reflective symmetry (horizontal and vertical, through the center) and the triangle has 3. The other two figures have rotational symmetry, but not reflective symmetry.
C
\( \large 3\)
D
\( \large 4\)
Hint:
All four have rotational symmetry, but not reflective symmetry.
Question 1 Explanation: 
Topic: Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry, similarity, and congruence; and use these concepts to solve problems (Objective 0024).
Question 2

How many lines of reflective symmetry and how many centers of rotational symmetry does the parallelogram depicted below have?

 
A

4 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
B

2 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
C

0 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
The intersection of the diagonals is a center of rotational symmetry. There are no lines of reflective symmetry, although many people get confused about this fact (best to play with hands on examples to get a feel). Just fyi, the letter S also has rotational, but not reflective symmetry, and it's one that kids often write backwards.
D

2 lines of reflective symmetry, 0 centers of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper. Trace onto another sheet of paper. See if there's a way to rotate the cut out shape (less than a complete turn) so that it fits within the outlines again.
Question 2 Explanation: 
Topic: Analyze geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry (Objective 0024).
Question 3

Which of the following is equal to one million three hundred thousand?

A
\(\large1.3\times {{10}^{6}}\)
B
\(\large1.3\times {{10}^{9}}\)
Hint:
That's one billion three hundred million.
C
\(\large1.03\times {{10}^{6}}\)
Hint:
That's one million thirty thousand.
D
\(\large1.03\times {{10}^{9}}\)
Hint:
That's one billion thirty million
Question 3 Explanation: 
Topic: Scientific Notation (Objective 0016)
Question 4

The table below gives data from various years on how many young girls drank milk.

Based on the data given above, what was the probability that a randomly chosen girl in 1990 drank milk?

A
\( \large \dfrac{502}{1222}\)
Hint:
This is the probability that a randomly chosen girl who drinks milk was in the 1989-1991 food survey.
B
\( \large \dfrac{502}{2149}\)
Hint:
This is the probability that a randomly chosen girl from the whole survey drank milk and was also surveyed in 1989-1991.
C
\( \large \dfrac{502}{837}\)
D
\( \large \dfrac{1222}{2149}\)
Hint:
This is the probability that a randomly chosen girl from any year of the survey drank milk.
Question 4 Explanation: 
Topic: Recognize and apply the concept of conditional probability (Objective 0026).
Question 5

Use the expression below to answer the question that follows.

      \( \large 3\times {{10}^{4}}+2.2\times {{10}^{2}}\)

Which of the following is closest to the expression above?

A

Five million

Hint:
Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values.
B

Fifty thousand

Hint:
Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values.
C

Three million

Hint:
Don't add the exponents.
D

Thirty thousand

Hint:
\( 3\times {{10}^{4}} = 30,000;\) the other term is much smaller and doesn't change the estimate.
Question 5 Explanation: 
Topics: Place value, scientific notation, estimation (Objective 0016)
Question 6

Here is a method that a student used for subtraction:

Which of the following is correct?

A

The student used a method that worked for this problem and can be generalized to any subtraction problem.

Hint:
Note that this algorithm is taught as the "standard" algorithm in much of Europe (it's where the term "borrowing" came from -- you borrow on top and "pay back" on the bottom).
B

The student used a method that worked for this problem and that will work for any subtraction problem that only requires one regrouping; it will not work if more regrouping is required.

Hint:
Try some more examples.
C

The student used a method that worked for this problem and will work for all three-digit subtraction problems, but will not work for larger problems.

Hint:
Try some more examples.
D

The student used a method that does not work. The student made two mistakes that cancelled each other out and was lucky to get the right answer for this problem.

Hint:
Remember, there are many ways to do subtraction; there is no one "right" algorithm.
Question 6 Explanation: 
Topic: Analyze and justify standard and non-standard computational techniques (Objective 0019).
Question 7

A family on vacation drove the first 200 miles in 4 hours and the second 200 miles in 5 hours.  Which expression below gives their average speed for the entire trip?

A
\( \large \dfrac{200+200}{4+5}\)
Hint:
Average speed is total distance divided by total time.
B
\( \large \left( \dfrac{200}{4}+\dfrac{200}{5} \right)\div 2\)
Hint:
This seems logical, but the problem is that it weights the first 4 hours and the second 5 hours equally, when each hour should get the same weight in computing the average speed.
C
\( \large \dfrac{200}{4}+\dfrac{200}{5} \)
Hint:
This would be an average of 90 miles per hour!
D
\( \large \dfrac{400}{4}+\dfrac{400}{5} \)
Hint:
This would be an average of 180 miles per hour! Even a family of race car drivers probably doesn't have that average speed on a vacation!
Question 7 Explanation: 
Topic: Solve a variety of measurement problems (e.g., time, temperature, rates, average rates of change) in real-world situations (Objective 0023).
Question 8

Which property is not shared by all rhombi?

A

4 congruent sides

Hint:
The most common definition of a rhombus is a quadrilateral with 4 congruent sides.
B

A center of rotational symmetry

Hint:
The diagonal of a rhombus separates it into two congruent isosceles triangles. The center of this line is a center of 180 degree rotational symmetry that switches the triangles.
C

4 congruent angles

Hint:
Unless the rhombus is a square, it does not have 4 congruent angles.
D

2 sets of parallel sides

Hint:
All rhombi are parallelograms.
Question 8 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles, and symmetry (Objective 0024).
Question 9

The following story situations model \( 12\div 3\):

I)  Jack has 12 cookies, which he wants to share equally between himself and two friends.  How many cookies does each person get?

II) Trent has 12 cookies, which he wants to put into bags of 3 cookies each.  How many bags can he make?

III) Cicely has $12.  Cookies cost $3 each.  How many cookies can she buy?

Which of these questions illustrate the same model of division, either partitive (partioning) or measurement (quotative)?

A

I and II

B

I and III

C

II and III

Hint:
Problem I is partitive (or partitioning or sharing) -- we put 12 objects into 3 groups. Problems II and III are quotative (or measurement) -- we put 12 objects in groups of 3.
D

All three problems model the same meaning of division

Question 9 Explanation: 
Topic: Understand models of operations on numbers (Objective 0019).
Question 10

What is the length of side \(\overline{BD}\) in the triangle below, where \(\angle DBA\) is a right angle?

A
\( \large 1\)
Hint:
Use the Pythagorean Theorem.
B
\( \large \sqrt{5}\)
Hint:
\(2^2+e^2=3^2\) or \(4+e^2=9;e^2=5; e=\sqrt{5}\).
C
\( \large \sqrt{13}\)
Hint:
e is not the hypotenuse.
D
\( \large 5\)
Hint:
Use the Pythagorean Theorem.
Question 10 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023), and recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 11

Which of the following points is closest to \( \dfrac{34}{135} \times \dfrac{53}{86}\)?

A

A

Hint:
\(\frac{34}{135} \approx \frac{1}{4}\) and \( \frac{53}{86} \approx \frac {2}{3}\). \(\frac {1}{4}\) of \(\frac {2}{3}\) is small and closest to A.
B

B

Hint:
Estimate with simpler fractions.
C

C

Hint:
Estimate with simpler fractions.
D

D

Hint:
Estimate with simpler fractions.
Question 11 Explanation: 
Topic: Understand meaning and models of operations on fractions (Objective 0019).
Question 12

Use the expression below to answer the question that follows.

                 \(\large \dfrac{\left( 155 \right)\times \left( 6,124 \right)}{977}\)

Which of the following is the best estimate of the expression above?

A

100

Hint:
6124/977 is approximately 6.
B

200

Hint:
6124/977 is approximately 6.
C

1,000

Hint:
6124/977 is approximately 6. 155 is approximately 150, and \( 6 \times 150 = 3 \times 300 = 900\), so this answer is closest.
D

2,000

Hint:
6124/977 is approximately 6.
Question 12 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016).
Question 13

Which of the numbers below is a fraction equivalent to \( 0.\bar{6}\)?

A
\( \large \dfrac{4}{6}\)
Hint:
\( 0.\bar{6}=\dfrac{2}{3}=\dfrac{4}{6}\)
B
\( \large \dfrac{3}{5}\)
Hint:
This is equal to 0.6, without the repeating decimal. Answer is equivalent to choice c, which is another way to tell that it's wrong.
C
\( \large \dfrac{6}{10}\)
Hint:
This is equal to 0.6, without the repeating decimal. Answer is equivalent to choice b, which is another way to tell that it's wrong.
D
\( \large \dfrac{1}{6}\)
Hint:
This is less than a half, and \( 0.\bar{6}\) is greater than a half.
Question 13 Explanation: 
Topic: Converting between fraction and decimal representations (Objective 0017)
Question 14

The least common multiple of 60 and N is 1260. Which of the following could be the prime factorization of N?

A
\( \large2\cdot 5\cdot 7\)
Hint:
1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM.
B
\( \large{{2}^{3}}\cdot {{3}^{2}}\cdot 5 \cdot 7\)
Hint:
1260 is not divisible by 8, so it isn't a multiple of this N.
C
\( \large3 \cdot 5 \cdot 7\)
Hint:
1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM.
D
\( \large{{3}^{2}}\cdot 5\cdot 7\)
Hint:
\(1260=2^2 \cdot 3^2 \cdot 5 \cdot 7\) and \(60=2^2 \cdot 3 \cdot 5\). In order for 1260 to be the LCM, N has to be a multiple of \(3^2\) and of 7 (because 60 is not a multiple of either of these). N also cannot introduce a factor that would require the LCM to be larger (as in choice b).
Question 14 Explanation: 
Topic: Least Common Multiple (Objective 0018)
Question 15

What fraction of the area of the picture below is shaded?

A
\( \large \dfrac{17}{24}\)
Hint:
You might try adding segments so each quadrant is divided into 6 pieces with equal area -- there will be 24 regions, not all the same shape, but all the same area, with 17 of them shaded (for the top left quarter, you could also first change the diagonal line to a horizontal or vertical line that divides the square in two equal pieces and shade one) .
B
\( \large \dfrac{3}{4}\)
Hint:
Be sure you're taking into account the different sizes of the pieces.
C
\( \large \dfrac{2}{3}\)
Hint:
The bottom half of the picture is 2/3 shaded, and the top half is more than 2/3 shaded, so this answer is too small.
D
\( \large \dfrac{17}{6} \)
Hint:
This answer is bigger than 1, so doesn't make any sense. Be sure you are using the whole picture, not one quadrant, as the unit.
Question 15 Explanation: 
Topic: Models of Fractions (Objective 0017)
Question 16

Use the table below to answer the question that follows:

Gordon wants to buy three pounds of nuts.  Each of the stores above ordinarily sells the nuts for $4.99 a pound, but is offering a discount this week.  At which store can he buy the nuts for the least amount of money?

A

Store A

Hint:
This would save about $2.50. You can quickly see that D saves more.
B

Store B

Hint:
This saves 15% and C saves 25%.
C

Store C

D

Store D

Hint:
This is about 20% off, which is less of a discount than C.
Question 16 Explanation: 
Topic: Understand the meanings and models of integers, fractions, decimals,percents, and mixed numbers and apply them to the solution of word problems (Objective 0017).
Question 17

What is the least common multiple of 540 and 216?

A
\( \large{{2}^{5}}\cdot {{3}^{6}}\cdot 5\)
Hint:
This is the product of the numbers, not the LCM.
B
\( \large{{2}^{3}}\cdot {{3}^{3}}\cdot 5\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then for each prime that's a factor of either number, use the largest exponent that appears in one of the factorizations. You can also take the product of the two numbers divided by their GCD.
C
\( \large{{2}^{2}}\cdot {{3}^{3}}\cdot 5\)
Hint:
216 is a multiple of 8.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\cdot {{5}^{2}}\)
Hint:
Not a multiple of 216 and not a multiple of 540.
Question 17 Explanation: 
Topic: Find the least common multiple of a set of numbers (Objective 0018).
Question 18

Use the solution procedure below to answer the question that follows:

\( \large {\left( x+3 \right)}^{2}=10\)

\( \large \left( x+3 \right)\left( x+3 \right)=10\)

\( \large {x}^{2}+9=10\)

\( \large {x}^{2}+9-9=10-9\)

\( \large {x}^{2}=1\)

\( \large x=1\text{ or }x=-1\)

Which of the following is incorrect in the procedure shown above?

A

The commutative property is used incorrectly.

Hint:
The commutative property is \(a+b=b+a\) or \(ab=ba\).
B

The associative property is used incorrectly.

Hint:
The associative property is \(a+(b+c)=(a+b)+c\) or \(a \times (b \times c)=(a \times b) \times c\).
C

Order of operations is done incorrectly.

D

The distributive property is used incorrectly.

Hint:
\((x+3)(x+3)=x(x+3)+3(x+3)\)=\(x^2+3x+3x+9.\)
Question 18 Explanation: 
Topic: Justify algebraic manipulations by application of the properties of equality, the order of operations, the number properties, and the order properties (Objective 0020).
Question 19

The polygon depicted below is drawn on dot paper, with the dots spaced 1 unit apart.  What is the perimeter of the polygon?

A
\( \large 18+\sqrt{2} \text{ units}\)
Hint:
Be careful with the Pythagorean Theorem.
B
\( \large 18+2\sqrt{2}\text{ units}\)
Hint:
There are 13 horizontal or vertical 1 unit segments. The longer diagonal is the hypotenuse of a 3-4-5 right triangle, so its length is 5 units. The shorter diagonal is the hypotenuse of a 45-45-90 right triangle with side 2, so its hypotenuse has length \(2 \sqrt{2}\).
C
\( \large 18 \text{ units} \)
Hint:
Use the Pythagorean Theorem to find the lengths of the diagonal segments.
D
\( \large 20 \text{ units}\)
Hint:
Use the Pythagorean Theorem to find the lengths of the diagonal segments.
Question 19 Explanation: 
Topic: Recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 20

Which of the following is an irrational number?

A
\( \large \sqrt[3]{8}\)
Hint:
This answer is the cube root of 8. Since 2 x 2 x 2 =8, this is equal to 2, which is rational because 2 = 2/1.
B
\( \large \sqrt{8}\)
Hint:
It is not trivial to prove that this is irrational, but you can get this answer by eliminating the other choices.
C
\( \large \dfrac{1}{8}\)
Hint:
1/8 is the RATIO of two integers, so it is rational.
D
\( \large -8\)
Hint:
Negative integers are also rational, -8 = -8/1, a ratio of integers.
Question 20 Explanation: 
Topic: Identifying rational and irrational numbers (Objective 0016).
Question 21

The equation \( \large F=\frac{9}{5}C+32\) is used to convert a temperature measured in Celsius to the equivalent Farentheit temperature.

A patient's temperature increased by 1.5° Celcius.  By how many degrees Fahrenheit did her temperature increase?

A

1.5°

Hint:
Celsius and Fahrenheit don't increase at the same rate.
B

1.8°

Hint:
That's how much the Fahrenheit temp increases when the Celsius temp goes up by 1 degree.
C

2.7°

Hint:
Each degree increase in Celsius corresponds to a \(\dfrac{9}{5}=1.8\) degree increase in Fahrenheit. Thus the increase is 1.8+0.9=2.7.
D

Not enough information.

Hint:
A linear equation has constant slope, which means that every increase of the same amount in one variable, gives a constant increase in the other variable. It doesn't matter what temperature the patient started out at.
Question 21 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 22

Use the expression below to answer the question that follows:

                 \( \large \dfrac{\left( 7,154 \right)\times \left( 896 \right)}{216}\)

Which of the following is the best estimate of the expression above?

A

2,000

Hint:
The answer is bigger than 7,000.
B

20,000

Hint:
Estimate 896/216 first.
C

3,000

Hint:
The answer is bigger than 7,000.
D

30,000

Hint:
\( \dfrac{896}{216} \approx 4\) and \(7154 \times 4\) is over 28,000, so this answer is closest.
Question 22 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016, overlaps with other objectives).
Question 23

What set of transformations will transform the leftmost image into the rightmost image?

 
A

A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.

Hint:
Part of the figure would move below the x-axis with these transformations.
B

A translation 3 units up, followed by a reflection about the line y=x.

Hint:
See what happens to the point (5,1) under this set of transformations.
C

A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up.

D

A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.

Hint:
See what happens to the point (3,3) under this set of transformations.
Question 23 Explanation: 
Topic:Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations) (Objective 0024).
Question 24

Use the samples of a student's work below to answer the question that follows:

\( \large \dfrac{2}{3}\times \dfrac{3}{4}=\dfrac{4\times 2}{3\times 3}=\dfrac{8}{9}\) \( \large \dfrac{2}{5}\times \dfrac{7}{7}=\dfrac{7\times 2}{5\times 7}=\dfrac{2}{5}\) \( \large \dfrac{7}{6}\times \dfrac{3}{4}=\dfrac{4\times 7}{6\times 3}=\dfrac{28}{18}=\dfrac{14}{9}\)

Which of the following best describes the mathematical validity of the algorithm the student is using?

A

It is not valid. It never produces the correct answer.

Hint:
In the middle example,the answer is correct.
B

It is not valid. It produces the correct answer in a few special cases, but it‘s still not a valid algorithm.

Hint:
Note that this algorithm gives a/b divided by c/d, not a/b x c/d, but some students confuse multiplication and cross-multiplication. If a=0 or if c/d =1, division and multiplication give the same answer.
C

It is valid if the rational numbers in the multiplication problem are in lowest terms.

Hint:
Lowest terms is irrelevant.
D

It is valid for all rational numbers.

Hint:
Can't be correct as the first and last examples have the wrong answers.
Question 24 Explanation: 
Topic: Analyze Non-Standard Computational Algorithms (Objective 0019).
Question 25

How many factors does 80 have?

A
\( \large8\)
Hint:
Don't forget 1 and 80.
B
\( \large9\)
Hint:
Only perfect squares have an odd number of factors -- otherwise factors come in pairs.
C
\( \large10\)
Hint:
1,2,4,5,8,10,16,20,40,80
D
\( \large12\)
Hint:
Did you count a number twice? Include a number that isn't a factor?
Question 25 Explanation: 
Topic: Understand and apply principles of number theory (Objective 0018).
Question 26

Which of the following values of x satisfies the inequality \( \large \left| {{(x+2)}^{3}} \right|<3?\)

A
\( \large x=-3\)
Hint:
\( \left| {{(-3+2)}^{3}} \right|\)=\( \left | {(-1)}^3 \right | \)=\( \left | -1 \right |=1 \) .
B
\( \large x=0\)
Hint:
\( \left| {{(0+2)}^{3}} \right|\)=\( \left | {2}^3 \right | \)=\( \left | 8 \right | \) =\( 8\)
C
\( \large x=-4\)
Hint:
\( \left| {{(-4+2)}^{3}} \right|\)=\( \left | {(-2)}^3 \right | \)=\( \left | -8 \right | \) =\( 8\)
D
\( \large x=1\)
Hint:
\( \left| {{(1+2)}^{3}} \right|\)=\( \left | {3}^3 \right | \)=\( \left | 27 \right | \) = \(27\)
Question 26 Explanation: 
Topics: Laws of exponents, order of operations, interpret absolute value (Objective 0019).
Question 27

Use the table below to answer the question that follows:

Each number in the table above represents a value W that is determined by the values of x and y.  For example, when x=3 and y=1, W=5.  What is the value of W when x=9 and y=14?  Assume that the patterns in the table continue as shown.

A
\( \large W=-5\)
Hint:
When y is even, W is even.
B
\( \large W=4\)
Hint:
Note that when x increases by 1, W increases by 2, and when y increases by 1, W decreases by 1. At x=y=0, W=0, so at x=9, y=14, W has increased by \(9 \times 2\) and decreased by 14, or W=18-14=4.
C
\( \large W=6\)
Hint:
Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0.
D
\( \large W=32\)
Hint:
Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0.
Question 27 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic) (Objective 0021)
Question 28

Which of the following nets will not fold into a cube?

A
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
B
C
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
D
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
Question 28 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 29

A publisher prints a series of books with covers made of identical material and using the same thickness of paper for each page.  The covers of the book together are 0.4 cm thick, and 125 pieces of the paper used together are 1 cm thick.

The publisher uses a linear function to determine the total thickness, T(n) of a book made with n sheets of paper.   What are the slope and intercept of T(n)?

A

Intercept = 0.4 cm, Slope = 125 cm/page

Hint:
This would mean that each page of the book was 125 cm thick.
B

Intercept =0.4 cm, Slope = \(\dfrac{1}{125}\)cm/page

Hint:
The intercept is how thick the book would be with no pages in it. The slope is how much 1 extra page adds to the thickness of the book.
C

Intercept = 125 cm, Slope = 0.4 cm

Hint:
This would mean that with no pages in the book, it would be 125 cm thick.
D

Intercept = \(\dfrac{1}{125}\)cm, Slope = 0.4 pages/cm

Hint:
This would mean that each new page of the book made it 0.4 cm thicker.
Question 29 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 30

In each expression below  N represents a negative integer. Which expression could have a negative value?

A
\( \large {{N}^{2}}\)
Hint:
Squaring always gives a non-negative value.
B
\( \large 6-N\)
Hint:
A story problem for this expression is, if it was 6 degrees out at noon and N degrees out at sunrise, by how many degrees did the temperature rise by noon? Since N is negative, the answer to this question has to be positive, and more than 6.
C
\( \large -N\)
Hint:
If N is negative, then -N is positive
D
\( \large 6+N\)
Hint:
For example, if \(N=-10\), then \(6+N = -4\)
Question 30 Explanation: 
If you are stuck on a question like this, try a few examples to eliminate some choices and to help you understand what the question means. Topic: Characteristics of integers (Objective 0016).
Question 31

At a school fundraising event, people can buy a ticket to spin a spinner like the one below.  The region that the spinner lands in tells which, if any, prize the person wins.

If 240 people buy tickets to spin the spinner, what is the best estimate of the number of keychains that will be given away?

A

40

Hint:
"Keychain" appears on the spinner twice.
B

80

Hint:
The probability of getting a keychain is 1/3, and so about 1/3 of the time the spinner will win.
C

100

Hint:
What is the probability of winning a keychain?
D

120

Hint:
That would be the answer for getting any prize, not a keychain specifically.
Question 31 Explanation: 
Topic: I would call this topic expected value, which is not listed on the objectives. This question is very similar to one on the sample test. It's not a good question in that it's oversimplified (a more difficult and interesting question would be something like, "The school bought 100 keychains for prizes, what is the probability that they will run out before 240 people play?"). In any case, I believe the objective this is meant for is, "Recognize the difference between experimentally and theoretically determined probabilities in real-world situations. (Objective 0026)." This is not something easily assessed with multiple choice .
Question 32

In January 2011, the national debt was about 14 trillion dollars and the US population was about 300 million people.  Someone reading these figures estimated that the national debt was about $5,000 per person.   Which of these statements best describes the reasonableness of this estimate?

A

It is too low by a factor of 10

Hint:
14 trillion \( \approx 15 \times {{10}^{12}} \) and 300 million \( \approx 3 \times {{10}^{8}}\), so the true answer is about \( 5 \times {{10}^{4}} \) or $50,000.
B

It is too low by a factor of 100

C

It is too high by a factor of 10

D

It is too high by a factor of 100

Question 32 Explanation: 
Topics: Estimation, Scientific Notation in the real world (Objective 0016).
Question 33

There are six gumballs in a bag — two red and four green.  Six children take turns picking a gumball out of the bag without looking.   They do not return any gumballs to the bag.  What is the probability that the first two children to pick from the bag pick the red gumballs?

A
\( \large \dfrac{1}{3}\)
Hint:
This is the probability that the first child picks a red gumball, but not that the first two children pick red gumballs.
B
\( \large \dfrac{1}{8}\)
Hint:
Are you adding things that you should be multiplying?
C
\( \large \dfrac{1}{9}\)
Hint:
This would be the probability if the gumballs were returned to the bag.
D
\( \large \dfrac{1}{15}\)
Hint:
The probability that the first child picks red is 2/6 = 1/3. Then there are 5 gumballs in the bag, one red, so the probability that the second child picks red is 1/5. Thus 1/5 of the time, after the first child picks red, the second does too, so the probability is 1/5 x 1/3 = 1/15.
Question 33 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 34

A biology class requires a lab fee, which is a whole number of dollars, and the same amount for all students. On Monday the instructor collected $70 in fees, on Tuesday she collected $126, and on Wednesday she collected $266. What is the largest possible amount the fee could be?

A

$2

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
B

$7

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
C

$14

Hint:
This is the greatest common factor of 70, 126, and 266.
D

$70

Hint:
Not a factor of 126 or 266, so couldn't be correct.
Question 34 Explanation: 
Topic: Use GCF in real-world context (Objective 0018)
Question 35

Use the expression below to answer the question that follows.

                 \( \large \dfrac{\left( 4\times {{10}^{3}} \right)\times \left( 3\times {{10}^{4}} \right)}{6\times {{10}^{6}}}\)

Which of the following is equivalent to the expression above?

A

2

Hint:
\(10^3 \times 10^4=10^7\), and note that if you're guessing when the answers are so closely related, you're generally better off guessing one of the middle numbers.
B

20

Hint:
\( \dfrac{\left( 4\times {{10}^{3}} \right)\times \left( 3\times {{10}^{4}} \right)}{6\times {{10}^{6}}}=\dfrac {12 \times {{10}^{7}}}{6\times {{10}^{6}}}=\)\(2 \times {{10}^{1}}=20 \)
C

200

Hint:
\(10^3 \times 10^4=10^7\)
D

2000

Hint:
\(10^3 \times 10^4=10^7\), and note that if you're guessing when the answers are so closely related, you're generally better off guessing one of the middle numbers.
Question 35 Explanation: 
Topics: Scientific notation, exponents, simplifying fractions (Objective 0016, although overlaps with other objectives too).
Question 36

Which of the following is equal to eleven billion four hundred thousand?

A
\( \large 11,400,000\)
Hint:
That's eleven million four hundred thousand.
B
\(\large11,000,400,000\)
C
\( \large11,000,000,400,000\)
Hint:
That's eleven trillion four hundred thousand (although with British conventions; this answer is correct, but in the US, it isn't).
D
\( \large 11,400,000,000\)
Hint:
That's eleven billion four hundred million
Question 36 Explanation: 
Topic: Place Value (Objective 0016)
Question 37

Exactly one of the numbers below is a prime number.  Which one is it?

A
\( \large511 \)
Hint:
Divisible by 7.
B
\( \large517\)
Hint:
Divisible by 11.
C
\( \large519\)
Hint:
Divisible by 3.
D
\( \large521\)
Question 37 Explanation: 
Topics: Identify prime and composite numbers and demonstrate knowledge of divisibility rules (Objective 0018).
Question 38

Aya and Kendra want to estimate the height of a tree. On a sunny day, Aya measures Kendra's shadow as 3 meters long, and Kendra measures the tree's shadow as 15 meters long. Kendra is 1.5 meters tall. How tall is the tree?

A

7.5 meters

Hint:
Here is a picture, note that the large and small right triangles are similar:

One way to do the problem is to note that there is a dilation (scale) factor of 5 on the shadows, so there must be that factor on the heights too. Another way is to note that the shadows are twice as long as the heights.
B

22.5 meters

Hint:
Draw a picture.
C

30 meters

Hint:
Draw a picture.
D

45 meters

Hint:
Draw a picture.
Question 38 Explanation: 
Topic: Apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to similarity, ; and use these concepts to solve problems (Objective 0024) . Fits in other places too.
Question 39

The column below consists of two cubes and a cylinder.  The cylinder has diameter y, which is also the length of the sides of each cube.   The total height of the column is 5y.  Which of the formulas below gives the volume of the column?

 
A
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{4}\)
Hint:
The cubes each have volume \(y^3\). The cylinder has radius \(\dfrac{y}{2}\) and height \(3y\). The volume of a cylinder is \(\pi r^2 h=\pi ({\dfrac{y}{2}})^2(3y)=\dfrac{3\pi {{y}^{3}}}{4}\). Note that the volume of a cylinder is analogous to that of a prism -- area of the base times height.
B
\( \large 2{{y}^{3}}+3\pi {{y}^{3}}\)
Hint:
y is the diameter of the circle, not the radius.
C
\( \large {{y}^{3}}+5\pi {{y}^{3}}\)
Hint:
Don't forget to count both cubes.
D
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{8}\)
Hint:
Make sure you know how to find the volume of a cylinder.
Question 39 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
Question 40

On a map the distance from Boston to Detroit is 6 cm, and these two cities are 702 miles away from each other. Assuming the scale of the map is the same throughout, which answer below is closest to the distance between Boston and San Francisco on the map, given that they are 2,708 miles away from each other?

A

21 cm

Hint:
How many miles would correspond to 24 cm on the map? Try adjusting from there.
B

22 cm

Hint:
How many miles would correspond to 24 cm on the map? Try adjusting from there.
C

23 cm

Hint:
One way to solve this without a calculator is to note that 4 groups of 6 cm is 2808 miles, which is 100 miles too much. Then 100 miles would be about 1/7 th of 6 cm, or about 1 cm less than 24 cm.
D

24 cm

Hint:
4 groups of 6 cm is over 2800 miles on the map, which is too much.
Question 40 Explanation: 
Topic: Apply proportional thinking to estimate quantities in real world situations (Objective 0019).
Question 41

Some children explored the diagonals in 2 x 2 squares on pages of a calendar (where all four squares have numbers in them).  They conjectured that the sum of the diagonals is always equal; in the example below, 8+16=9+15.

 

Which of the equations below could best be used to explain why the children's conjecture is correct?

A
\( \large 8x+16x=9x+15x\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
B
\( \large x+(x+2)=(x+1)+(x+1)\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
C
\( \large x+(x+8)=(x+1)+(x+7)\)
Hint:
x is the number in the top left square, x+8 is one below and to the right, x+1 is to the right of x, and x+7 is below x.
D
\( \large x+8+16=x+9+15\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
Question 41 Explanation: 
Topic: Recognize and apply the concepts of variable, equality, and equation to express relationships algebraically (Objective 0020).
Question 42

Which of the graphs below represent functions?

I. II. III. IV.   
A

I and IV only.

Hint:
There are vertical lines that go through 2 points in IV .
B

I and III only.

Hint:
Even though III is not continuous, it's still a function (assuming that vertical lines between the "steps" do not go through 2 points).
C

II and III only.

Hint:
Learn about the vertical line test.
D

I, II, and IV only.

Hint:
There are vertical lines that go through 2 points in II.
Question 42 Explanation: 
Understand the definition of function and various representations of functions (e.g., input/output machines, tables, graphs, mapping diagrams, formulas). (Objective 0021).
Question 43

The first histogram shows the average life expectancies for women in different countries in Africa in 1998; the second histogram gives similar data for Europe:

  

How much bigger is the range of the data for Africa than the range of the data for Europe?

A

0 years

Hint:
Range is the maximum life expectancy minus the minimum life expectancy.
B

12 years

Hint:
Are you subtracting frequencies? Range is about values of the data, not frequency.
C

18 years

Hint:
It's a little hard to read the graph, but it doesn't matter if you're consistent. It looks like the range for Africa is 80-38= 42 years and for Europe is 88-64 = 24; 42-24=18.
D

42 years

Hint:
Read the question more carefully.
Question 43 Explanation: 
Topic: Compare different data sets (Objective 0025).
Question 44

Cell phone plan A charges $3 per month plus $0.10 per minute. Cell phone plan B charges $29.99 per month, with no fee for the first 400 minutes and then $0.20 for each additional minute.

Which equation can be used to solve for the number of minutes, m (with m>400) that a person would have to spend on the phone each month in order for the bills for plan A and plan B to be equal?

A
\( \large 3.10m=400+0.2m\)
Hint:
These are the numbers in the problem, but this equation doesn't make sense. If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
B
\( \large 3+0.1m=29.99+.20m\)
Hint:
Doesn't account for the 400 free minutes.
C
\( \large 3+0.1m=400+29.99+.20(m-400)\)
Hint:
Why would you add 400 minutes and $29.99? If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
D
\( \large 3+0.1m=29.99+.20(m-400)\)
Hint:
The left side is $3 plus $0.10 times the number of minutes. The right is $29.99 plus $0.20 times the number of minutes over 400.
Question 44 Explanation: 
Identify variables and derive algebraic expressions that represent real-world situations (Objective 0020).
Question 45

Below are four inputs and outputs for a function machine representing the function A:

Which of the following equations could also represent A  for the values shown?

A
\( \large A(n)=n+4\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= -1 would output 3, not 0 as the machine does.
B
\( \large A(n)=n+2\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 4, not 6 as the machine does.
C
\( \large A(n)=2n+2\)
Hint:
Simply plug in each of the four function machine input values, and see that the equation produces the correct output, e.g. A(2)=6, A(-1)=0, etc.
D
\( \large A(n)=2\left( n+2 \right)\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 8, not 6 as the machine does.
Question 45 Explanation: 
Topics: Understand various representations of functions, and translate among different representations of functional relationships (Objective 0021).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 45 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
2122232425
2627282930
3132333435
3637383940
4142434445
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.