Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

Which of the following is not possible?

A

An equiangular triangle that is not equilateral.

Hint:
The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral.
B

An equiangular quadrilateral that is not equilateral.

Hint:
A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length).
C

An equilateral quadrilateral that is not equiangular.

Hint:
This rhombus has equal sides, but it doesn't have equal angles:
D

An equiangular hexagon that is not equilateral.

Hint:
This hexagon has equal angles, but it doesn't have equal sides:
Question 1 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles (Objective 0024).
Question 2

Use the graph below to answer the question that follows.

 

Which of the following is a correct equation for the graph of the line depicted above?

 
A
\( \large y=-\dfrac{1}{2}x+2\)
Hint:
The slope is -1/2 and the y-intercept is 2. You can also try just plugging in points. For example, this is the only choice that gives y=1 when x=2.
B
\( \large 4x=2y\)
Hint:
This line goes through (0,0); the graph above does not.
C
\( \large y=x+2\)
Hint:
The line pictured has negative slope.
D
\( \large y=-x+2\)
Hint:
Try plugging x=4 into this equation and see if that point is on the graph above.
Question 2 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 3

In March of 2012, 1 dollar was worth the same as 0.761 Euros, and 1 dollar was also worth the same as 83.03 Japanese Yen.  Which of the expressions below gives the number of Yen that are worth 1 Euro?

A
\( \large {83}.0{3}\cdot 0.{761}\)
Hint:
This equation gives less than the number of yen per dollar, but 1 Euro is worth more than 1 dollar.
B
\( \large \dfrac{0.{761}}{{83}.0{3}}\)
Hint:
Number is way too small.
C
\( \large \dfrac{{83}.0{3}}{0.{761}}\)
Hint:
One strategy here is to use easier numbers, say 1 dollar = .5 Euros and 100 yen, then 1 Euro would be 200 Yen (change the numbers in the equations and see what works). Another is to use dimensional analysis: we want # yen per Euro, or yen/Euro = yen/dollar \(\times\) dollar/Euro = \(83.03 \times \dfrac {1}{0.761}\)
D
\( \large \dfrac{1}{0.{761}}\cdot \dfrac{1}{{83}.0{3}}\)
Hint:
Number is way too small.
Question 3 Explanation: 
Topic: Analyze the relationships among proportions, constant rates, and linear functions (Objective 0022).
Question 4

At a school fundraising event, people can buy a ticket to spin a spinner like the one below.  The region that the spinner lands in tells which, if any, prize the person wins.

If 240 people buy tickets to spin the spinner, what is the best estimate of the number of keychains that will be given away?

A

40

Hint:
"Keychain" appears on the spinner twice.
B

80

Hint:
The probability of getting a keychain is 1/3, and so about 1/3 of the time the spinner will win.
C

100

Hint:
What is the probability of winning a keychain?
D

120

Hint:
That would be the answer for getting any prize, not a keychain specifically.
Question 4 Explanation: 
Topic: I would call this topic expected value, which is not listed on the objectives. This question is very similar to one on the sample test. It's not a good question in that it's oversimplified (a more difficult and interesting question would be something like, "The school bought 100 keychains for prizes, what is the probability that they will run out before 240 people play?"). In any case, I believe the objective this is meant for is, "Recognize the difference between experimentally and theoretically determined probabilities in real-world situations. (Objective 0026)." This is not something easily assessed with multiple choice .
Question 5

There are six gumballs in a bag — two red and four green.  Six children take turns picking a gumball out of the bag without looking.   They do not return any gumballs to the bag.  What is the probability that the first two children to pick from the bag pick the red gumballs?

A
\( \large \dfrac{1}{3}\)
Hint:
This is the probability that the first child picks a red gumball, but not that the first two children pick red gumballs.
B
\( \large \dfrac{1}{8}\)
Hint:
Are you adding things that you should be multiplying?
C
\( \large \dfrac{1}{9}\)
Hint:
This would be the probability if the gumballs were returned to the bag.
D
\( \large \dfrac{1}{15}\)
Hint:
The probability that the first child picks red is 2/6 = 1/3. Then there are 5 gumballs in the bag, one red, so the probability that the second child picks red is 1/5. Thus 1/5 of the time, after the first child picks red, the second does too, so the probability is 1/5 x 1/3 = 1/15.
Question 5 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 6

Use the graph below to answer the question that follows.

If the polygon shown above is reflected about the y axis and then rotated 90 degrees clockwise about the origin, which of the following graphs is the result?

A
Hint:
Try following the point (1,4) to see where it goes after each transformation.
B
C
Hint:
Make sure you're reflecting in the correct axis.
D
Hint:
Make sure you're rotating the correct direction.
Question 6 Explanation: 
Topic: Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry, similarity, and congruence; and use these concepts to solve problems (Objective 0024).
Question 7

The Venn Diagram below gives data on the number of seniors, athletes, and vegetarians in the student body at a college:

How many students at the college are seniors who are not vegetarians?

A
\( \large 137\)
Hint:
Doesn't include the senior athletes who are not vegetarians.
B
\( \large 167\)
C
\( \large 197\)
Hint:
That's all seniors, including vegetarians.
D
\( \large 279\)
Hint:
Includes all athletes who are not vegetarians, some of whom are not seniors.
Question 7 Explanation: 
Topic: Venn Diagrams (Objective 0025)
Question 8

A teacher has a list of all the countries in the world and their populations in March 2012.  She is going to have her students use technology to compute the mean and median of the numbers on the list.   Which of the following statements is true?

A

The teacher can be sure that the mean and median will be the same without doing any computation.

Hint:
Does this make sense? How likely is it that the mean and median of any large data set will be the same?
B

The teacher can be sure that the mean is bigger than the median without doing any computation.

Hint:
This is a skewed distribution, and very large countries like China and India contribute huge numbers to the mean, but are counted the same as small countries like Luxembourg in the median (the same thing happens w/data on salaries, where a few very high income people tilt the mean -- that's why such data is usually reported as medians).
C

The teacher can be sure that the median is bigger than the mean without doing any computation.

Hint:
Think about a set of numbers like 1, 2, 3, 4, 10,000 -- how do the mean/median compare? How might that relate to countries of the world?
D

There is no way for the teacher to know the relative size of the mean and median without computing them.

Hint:
Knowing the shape of the distribution of populations does give us enough info to know the relative size of the mean and median, even without computing them.
Question 8 Explanation: 
Topic: Use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 9

Cell phone plan A charges $3 per month plus $0.10 per minute. Cell phone plan B charges $29.99 per month, with no fee for the first 400 minutes and then $0.20 for each additional minute.

Which equation can be used to solve for the number of minutes, m (with m>400) that a person would have to spend on the phone each month in order for the bills for plan A and plan B to be equal?

A
\( \large 3.10m=400+0.2m\)
Hint:
These are the numbers in the problem, but this equation doesn't make sense. If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
B
\( \large 3+0.1m=29.99+.20m\)
Hint:
Doesn't account for the 400 free minutes.
C
\( \large 3+0.1m=400+29.99+.20(m-400)\)
Hint:
Why would you add 400 minutes and $29.99? If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
D
\( \large 3+0.1m=29.99+.20(m-400)\)
Hint:
The left side is $3 plus $0.10 times the number of minutes. The right is $29.99 plus $0.20 times the number of minutes over 400.
Question 9 Explanation: 
Identify variables and derive algebraic expressions that represent real-world situations (Objective 0020).
Question 10

Which of the numbers below is not equivalent to 4%?

A
\( \large \dfrac{1}{25}\)
Hint:
1/25=4/100, so this is equal to 4% (be sure you read the question correctly).
B
\( \large \dfrac{4}{100}\)
Hint:
4/100=4% (be sure you read the question correctly).
C
\( \large 0.4\)
Hint:
0.4=40% so this is not equal to 4%
D
\( \large 0.04\)
Hint:
0.04=4/100, so this is equal to 4% (be sure you read the question correctly).
Question 10 Explanation: 
Converting between fractions, decimals, and percents (Objective 0017).
Question 11

The function d(x) gives the result when 12 is divided by x.  Which of the following is a graph of d(x)?

 
A
Hint:
d(x) is 12 divided by x, not x divided by 12.
B
Hint:
When x=2, what should d(x) be?
C
Hint:
When x=2, what should d(x) be?
D
Question 11 Explanation: 
Topic: Identify and analyze direct and inverse relationships in tables, graphs, algebraic expressions and real-world situations (Objective 0021)
Question 12

Use the expression below to answer the question that follows.

      \( \large 3\times {{10}^{4}}+2.2\times {{10}^{2}}\)

Which of the following is closest to the expression above?

A

Five million

Hint:
Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values.
B

Fifty thousand

Hint:
Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values.
C

Three million

Hint:
Don't add the exponents.
D

Thirty thousand

Hint:
\( 3\times {{10}^{4}} = 30,000;\) the other term is much smaller and doesn't change the estimate.
Question 12 Explanation: 
Topics: Place value, scientific notation, estimation (Objective 0016)
Question 13

The chairs in a large room can be arranged in rows of 18, 25, or 60 with no chairs left over. If C is the smallest possible number of chairs in the room, which of the following inequalities does C satisfy?

A
\( \large C\le 300\)
Hint:
Find the LCM.
B
\( \large 300 < C \le 500 \)
Hint:
Find the LCM.
C
\( \large 500 < C \le 700 \)
Hint:
Find the LCM.
D
\( \large C>700\)
Hint:
The LCM is 900, which is the smallest number of chairs.
Question 13 Explanation: 
Topic: Apply LCM in "real-world" situations (according to standardized tests....) (Objective 0018).
Question 14

Use the table below to answer the question that follows:

Gordon wants to buy three pounds of nuts.  Each of the stores above ordinarily sells the nuts for $4.99 a pound, but is offering a discount this week.  At which store can he buy the nuts for the least amount of money?

A

Store A

Hint:
This would save about $2.50. You can quickly see that D saves more.
B

Store B

Hint:
This saves 15% and C saves 25%.
C

Store C

D

Store D

Hint:
This is about 20% off, which is less of a discount than C.
Question 14 Explanation: 
Topic: Understand the meanings and models of integers, fractions, decimals,percents, and mixed numbers and apply them to the solution of word problems (Objective 0017).
Question 15

A family on vacation drove the first 200 miles in 4 hours and the second 200 miles in 5 hours.  Which expression below gives their average speed for the entire trip?

A
\( \large \dfrac{200+200}{4+5}\)
Hint:
Average speed is total distance divided by total time.
B
\( \large \left( \dfrac{200}{4}+\dfrac{200}{5} \right)\div 2\)
Hint:
This seems logical, but the problem is that it weights the first 4 hours and the second 5 hours equally, when each hour should get the same weight in computing the average speed.
C
\( \large \dfrac{200}{4}+\dfrac{200}{5} \)
Hint:
This would be an average of 90 miles per hour!
D
\( \large \dfrac{400}{4}+\dfrac{400}{5} \)
Hint:
This would be an average of 180 miles per hour! Even a family of race car drivers probably doesn't have that average speed on a vacation!
Question 15 Explanation: 
Topic: Solve a variety of measurement problems (e.g., time, temperature, rates, average rates of change) in real-world situations (Objective 0023).
Question 16

What set of transformations will transform the leftmost image into the rightmost image?

 
A

A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.

Hint:
Part of the figure would move below the x-axis with these transformations.
B

A translation 3 units up, followed by a reflection about the line y=x.

Hint:
See what happens to the point (5,1) under this set of transformations.
C

A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up.

D

A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.

Hint:
See what happens to the point (3,3) under this set of transformations.
Question 16 Explanation: 
Topic:Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations) (Objective 0024).
Question 17

Use the graph below to answer the question that follows:

The graph above represents the equation \( \large 3x+Ay=B\), where A and B are integers.  What are the values of A and B?

A
\( \large A = -2, B= 6\)
Hint:
Plug in (2,0) to get B=6, then plug in (0,-3) to get A=-2.
B
\( \large A = 2, B = 6\)
Hint:
Try plugging (0,-3) into this equation.
C
\( \large A = -1.5, B=-3\)
Hint:
The problem said that A and B were integers and -1.5 is not an integer. Don't try to use slope-intercept form.
D
\( \large A = 2, B = -3\)
Hint:
Try plugging (2,0) into this equation.
Question 17 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 18

Below are four inputs and outputs for a function machine representing the function A:

Which of the following equations could also represent A  for the values shown?

A
\( \large A(n)=n+4\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= -1 would output 3, not 0 as the machine does.
B
\( \large A(n)=n+2\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 4, not 6 as the machine does.
C
\( \large A(n)=2n+2\)
Hint:
Simply plug in each of the four function machine input values, and see that the equation produces the correct output, e.g. A(2)=6, A(-1)=0, etc.
D
\( \large A(n)=2\left( n+2 \right)\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 8, not 6 as the machine does.
Question 18 Explanation: 
Topics: Understand various representations of functions, and translate among different representations of functional relationships (Objective 0021).
Question 19

If  x  is an integer, which of the following must also be an integer?

A
\( \large \dfrac{x}{2}\)
Hint:
If x is odd, then \( \dfrac{x}{2} \) is not an integer, e.g. 3/2 = 1.5.
B
\( \large \dfrac{2}{x}\)
Hint:
Only an integer if x = -2, -1, 1, or 2.
C
\( \large-x\)
Hint:
-1 times any integer is still an integer.
D
\(\large\sqrt{x}\)
Hint:
Usually not an integer, e.g. \( \sqrt{2} \approx 1.414 \).
Question 19 Explanation: 
Topic: Integers (Objective 0016)
Question 20

What is the greatest common factor of 540 and 216?

A
\( \large{{2}^{2}}\cdot {{3}^{3}}\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then take the smaller power for each prime that is a factor of both numbers.
B
\( \large2\cdot 3\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
C
\( \large{{2}^{3}}\cdot {{3}^{3}}\)
Hint:
\(2^3 = 8\) is not a factor of 540.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
Question 20 Explanation: 
Topic: Find the greatest common factor of a set of numbers (Objective 0018).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.