Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1
I. \(\large \dfrac{1}{2}+\dfrac{1}{3}\) II. \( \large   .400000\)  III. \(\large\dfrac{1}{5}+\dfrac{1}{5}\)
     
IV. \( \large 40\% \) V. \( \large 0.25 \) VI. \(\large\dfrac{14}{35}\)

 

Which of the lists below includes all of the above expressions that are equivalent to \( \dfrac{2}{5}\)?

A

I, III, V, VI

Hint:
I and V are not at all how fractions and decimals work.
B

III, VI

Hint:
These are right, but there are more.
C

II, III, VI

Hint:
These are right, but there are more.
D

II, III, IV, VI

Question 1 Explanation: 
Topic: Converting between fractions, decimals, and percents (Objective 0017)
Question 2

Use the graph below to answer the question that follows.

If the polygon shown above is reflected about the y axis and then rotated 90 degrees clockwise about the origin, which of the following graphs is the result?

A
Hint:
Try following the point (1,4) to see where it goes after each transformation.
B
C
Hint:
Make sure you're reflecting in the correct axis.
D
Hint:
Make sure you're rotating the correct direction.
Question 2 Explanation: 
Topic: Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry, similarity, and congruence; and use these concepts to solve problems (Objective 0024).
Question 3

Use the graph below to answer the question that follows:

The graph above represents the equation \( \large 3x+Ay=B\), where A and B are integers.  What are the values of A and B?

A
\( \large A = -2, B= 6\)
Hint:
Plug in (2,0) to get B=6, then plug in (0,-3) to get A=-2.
B
\( \large A = 2, B = 6\)
Hint:
Try plugging (0,-3) into this equation.
C
\( \large A = -1.5, B=-3\)
Hint:
The problem said that A and B were integers and -1.5 is not an integer. Don't try to use slope-intercept form.
D
\( \large A = 2, B = -3\)
Hint:
Try plugging (2,0) into this equation.
Question 3 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 4

Some children explored the diagonals in 2 x 2 squares on pages of a calendar (where all four squares have numbers in them).  They conjectured that the sum of the diagonals is always equal; in the example below, 8+16=9+15.

 

Which of the equations below could best be used to explain why the children's conjecture is correct?

A
\( \large 8x+16x=9x+15x\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
B
\( \large x+(x+2)=(x+1)+(x+1)\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
C
\( \large x+(x+8)=(x+1)+(x+7)\)
Hint:
x is the number in the top left square, x+8 is one below and to the right, x+1 is to the right of x, and x+7 is below x.
D
\( \large x+8+16=x+9+15\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
Question 4 Explanation: 
Topic: Recognize and apply the concepts of variable, equality, and equation to express relationships algebraically (Objective 0020).
Question 5

Which of the numbers below is not equivalent to 4%?

A
\( \large \dfrac{1}{25}\)
Hint:
1/25=4/100, so this is equal to 4% (be sure you read the question correctly).
B
\( \large \dfrac{4}{100}\)
Hint:
4/100=4% (be sure you read the question correctly).
C
\( \large 0.4\)
Hint:
0.4=40% so this is not equal to 4%
D
\( \large 0.04\)
Hint:
0.04=4/100, so this is equal to 4% (be sure you read the question correctly).
Question 5 Explanation: 
Converting between fractions, decimals, and percents (Objective 0017).
Question 6

The expression \( \large {{7}^{-4}}\cdot {{8}^{-6}}\) is equal to which of the following?

A
\( \large \dfrac{8}{{{\left( 56 \right)}^{4}}}\)
Hint:
The bases are whole numbers, and the exponents are negative. How can the numerator be 8?
B
\( \large \dfrac{64}{{{\left( 56 \right)}^{4}}}\)
Hint:
The bases are whole numbers, and the exponents are negative. How can the numerator be 64?
C
\( \large \dfrac{1}{8\cdot {{\left( 56 \right)}^{4}}}\)
Hint:
\(8^{-6}=8^{-4} \times 8^{-2}\)
D
\( \large \dfrac{1}{64\cdot {{\left( 56 \right)}^{4}}}\)
Question 6 Explanation: 
Topics: Laws of exponents (Objective 0019).
Question 7

Below is a portion of a number line:

 Point B is halfway between two tick marks.  What number is represented by Point B?

 
A
\( \large 0.645\)
Hint:
That point is marked on the line, to the right.
B
\( \large 0.6421\)
Hint:
That point is to the left of point B.
C
\( \large 0.6422\)
Hint:
That point is to the left of point B.
D
\( \large 0.6425\)
Question 7 Explanation: 
Topic: Using Number Lines (Objective 0017)
Question 8

Which of the following is closest to the height of a college student in centimeters?

A

1.6 cm

Hint:
This is more the height of a Lego toy college student -- less than an inch!
B

16 cm

Hint:
Less than knee high on most college students.
C

160 cm

Hint:
Remember, a meter stick (a little bigger than a yard stick) is 100 cm. Also good to know is that 4 inches is approximately 10 cm.
D

1600 cm

Hint:
This college student might be taller than some campus buildings!
Question 8 Explanation: 
Topic: Estimate and calculate measurements using customary, metric, and nonstandard units of measurement (Objective 0023).
Question 9

Use the expression below to answer the question that follows.

                 \(\large \dfrac{\left( 155 \right)\times \left( 6,124 \right)}{977}\)

Which of the following is the best estimate of the expression above?

A

100

Hint:
6124/977 is approximately 6.
B

200

Hint:
6124/977 is approximately 6.
C

1,000

Hint:
6124/977 is approximately 6. 155 is approximately 150, and \( 6 \times 150 = 3 \times 300 = 900\), so this answer is closest.
D

2,000

Hint:
6124/977 is approximately 6.
Question 9 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016).
Question 10

The column below consists of two cubes and a cylinder.  The cylinder has diameter y, which is also the length of the sides of each cube.   The total height of the column is 5y.  Which of the formulas below gives the volume of the column?

 
A
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{4}\)
Hint:
The cubes each have volume \(y^3\). The cylinder has radius \(\dfrac{y}{2}\) and height \(3y\). The volume of a cylinder is \(\pi r^2 h=\pi ({\dfrac{y}{2}})^2(3y)=\dfrac{3\pi {{y}^{3}}}{4}\). Note that the volume of a cylinder is analogous to that of a prism -- area of the base times height.
B
\( \large 2{{y}^{3}}+3\pi {{y}^{3}}\)
Hint:
y is the diameter of the circle, not the radius.
C
\( \large {{y}^{3}}+5\pi {{y}^{3}}\)
Hint:
Don't forget to count both cubes.
D
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{8}\)
Hint:
Make sure you know how to find the volume of a cylinder.
Question 10 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
Question 11

Which of the graphs below represent functions?

I. II. III. IV.   
A

I and IV only.

Hint:
There are vertical lines that go through 2 points in IV .
B

I and III only.

Hint:
Even though III is not continuous, it's still a function (assuming that vertical lines between the "steps" do not go through 2 points).
C

II and III only.

Hint:
Learn about the vertical line test.
D

I, II, and IV only.

Hint:
There are vertical lines that go through 2 points in II.
Question 11 Explanation: 
Understand the definition of function and various representations of functions (e.g., input/output machines, tables, graphs, mapping diagrams, formulas). (Objective 0021).
Question 12

A biology class requires a lab fee, which is a whole number of dollars, and the same amount for all students. On Monday the instructor collected $70 in fees, on Tuesday she collected $126, and on Wednesday she collected $266. What is the largest possible amount the fee could be?

A

$2

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
B

$7

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
C

$14

Hint:
This is the greatest common factor of 70, 126, and 266.
D

$70

Hint:
Not a factor of 126 or 266, so couldn't be correct.
Question 12 Explanation: 
Topic: Use GCF in real-world context (Objective 0018)
Question 13

Given that 10 cm is approximately equal to 4 inches, which of the following expressions models a way to find out approximately how many inches are equivalent to 350 cm?

A
\( \large 350\times \left( \dfrac{10}{4} \right)\)
Hint:
The final result should be smaller than 350, and this answer is bigger.
B
\( \large 350\times \left( \dfrac{4}{10} \right)\)
Hint:
Dimensional analysis can help here: \(350 \text{cm} \times \dfrac{4 \text{in}}{10 \text{cm}}\). The cm's cancel and the answer is in inches.
C
\( \large (10-4) \times 350 \)
Hint:
This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense.
D
\( \large (350-10) \times 4\)
Hint:
This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense.
Question 13 Explanation: 
Topic: Applying fractions to word problems (Objective 0017) This problem is similar to one on the official sample test for that objective, but it might fit better into unit conversion and dimensional analysis (Objective 0023: Measurement)
Question 14

A class is using base-ten block to represent numbers.  A large cube represents 1000, a flat represents 100, a rod represents 10, and a little cube represents 1.  Which of these is not a correct representation for 2,347?

A

23 flats, 4 rods, 7 little cubes

Hint:
Be sure you read the question carefully: 2300+40+7=2347
B

2 large cubes, 3 flats, 47 rods

Hint:
2000+300+470 \( \neq\) 2347
C

2 large cubes, 34 rods, 7 little cubes

Hint:
Be sure you read the question carefully: 2000+340+7=2347
D

2 large cubes, 3 flats, 4 rods, 7 little cubes

Hint:
Be sure you read the question carefully: 2000+300+40+7=2347
Question 14 Explanation: 
Topic: Place Value (Objective 0016)
Question 15

The prime factorization of  n can be written as n=pqr, where p, q, and r are distinct prime numbers.  How many factors does n have, including 1 and itself?

A
\( \large3\)
Hint:
1, p, q, r, and pqr are already 5, so this isn't enough. You might try plugging in p=2, q=3, and r=5 to help with this problem.
B
\( \large5\)
Hint:
Don't forget pq, etc. You might try plugging in p=2, q=3, and r=5 to help with this problem.
C
\( \large6\)
Hint:
You might try plugging in p=2, q=3, and r=5 to help with this problem.
D
\( \large8\)
Hint:
1, p, q, r, pq, pr, qr, pqr.
Question 15 Explanation: 
Topic: Recognize uses of prime factorization of a number (Objective 0018).
Question 16

There are 15 students for every teacher.  Let t represent the number of teachers and let s represent the number of students.  Which of the following equations is correct?

A
\( \large t=s+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
B
\( \large s=t+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
C
\( \large t=15s\)
Hint:
This is a really easy mistake to make, which comes from transcribing directly from English, "1 teachers equals 15 students." To see that it's wrong, plug in s=2; do you really need 30 teachers for 2 students? To avoid this mistake, insert the word "number," "Number of teachers equals 15 times number of students" is more clearly problematic.
D
\( \large s=15t\)
Question 16 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Question 17

A publisher prints a series of books with covers made of identical material and using the same thickness of paper for each page.  The covers of the book together are 0.4 cm thick, and 125 pieces of the paper used together are 1 cm thick.

The publisher uses a linear function to determine the total thickness, T(n) of a book made with n sheets of paper.   What are the slope and intercept of T(n)?

A

Intercept = 0.4 cm, Slope = 125 cm/page

Hint:
This would mean that each page of the book was 125 cm thick.
B

Intercept =0.4 cm, Slope = \(\dfrac{1}{125}\)cm/page

Hint:
The intercept is how thick the book would be with no pages in it. The slope is how much 1 extra page adds to the thickness of the book.
C

Intercept = 125 cm, Slope = 0.4 cm

Hint:
This would mean that with no pages in the book, it would be 125 cm thick.
D

Intercept = \(\dfrac{1}{125}\)cm, Slope = 0.4 pages/cm

Hint:
This would mean that each new page of the book made it 0.4 cm thicker.
Question 17 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 18

A car is traveling at 60 miles per hour.  Which of the expressions below could be used to compute how many feet the car travels in 1 second?  Note that 1 mile = 5,280 feet.

A
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot 60\dfrac{\text{seconds}}{\text{minute}} \)
Hint:
This answer is not in feet/second.
B
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot \dfrac{1}{60}\dfrac{\text{hour}}{\text{minutes}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}} \)
Hint:
This is the only choice where the answer is in feet per second and the unit conversions are correct.
C
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{foot}}{\text{miles}}\cdot 60\dfrac{\text{hours}}{\text{minute}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}\)
Hint:
Are there really 60 hours in a minute?
D
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{mile}}{\text{feet}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}\)
Hint:
This answer is not in feet/second.
Question 18 Explanation: 
Topic: Use unit conversions and dimensional analysis to solve measurement problems (Objective 0023).
Question 19

Which of the following is not possible?

A

An equiangular triangle that is not equilateral.

Hint:
The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral.
B

An equiangular quadrilateral that is not equilateral.

Hint:
A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length).
C

An equilateral quadrilateral that is not equiangular.

Hint:
This rhombus has equal sides, but it doesn't have equal angles:
D

An equiangular hexagon that is not equilateral.

Hint:
This hexagon has equal angles, but it doesn't have equal sides:
Question 19 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles (Objective 0024).
Question 20

The first histogram shows the average life expectancies for women in different countries in Africa in 1998; the second histogram gives similar data for Europe:

  

How much bigger is the range of the data for Africa than the range of the data for Europe?

A

0 years

Hint:
Range is the maximum life expectancy minus the minimum life expectancy.
B

12 years

Hint:
Are you subtracting frequencies? Range is about values of the data, not frequency.
C

18 years

Hint:
It's a little hard to read the graph, but it doesn't matter if you're consistent. It looks like the range for Africa is 80-38= 42 years and for Europe is 88-64 = 24; 42-24=18.
D

42 years

Hint:
Read the question more carefully.
Question 20 Explanation: 
Topic: Compare different data sets (Objective 0025).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.