Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

Which of the following is equal to one million three hundred thousand?

A
\(\large1.3\times {{10}^{6}}\)
B
\(\large1.3\times {{10}^{9}}\)
Hint:
That's one billion three hundred million.
C
\(\large1.03\times {{10}^{6}}\)
Hint:
That's one million thirty thousand.
D
\(\large1.03\times {{10}^{9}}\)
Hint:
That's one billion thirty million
Question 1 Explanation: 
Topic: Scientific Notation (Objective 0016)
Question 2

There are 15 students for every teacher.  Let t represent the number of teachers and let s represent the number of students.  Which of the following equations is correct?

A
\( \large t=s+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
B
\( \large s=t+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
C
\( \large t=15s\)
Hint:
This is a really easy mistake to make, which comes from transcribing directly from English, "1 teachers equals 15 students." To see that it's wrong, plug in s=2; do you really need 30 teachers for 2 students? To avoid this mistake, insert the word "number," "Number of teachers equals 15 times number of students" is more clearly problematic.
D
\( \large s=15t\)
Question 2 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Question 3

A biology class requires a lab fee, which is a whole number of dollars, and the same amount for all students. On Monday the instructor collected $70 in fees, on Tuesday she collected $126, and on Wednesday she collected $266. What is the largest possible amount the fee could be?

A

$2

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
B

$7

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
C

$14

Hint:
This is the greatest common factor of 70, 126, and 266.
D

$70

Hint:
Not a factor of 126 or 266, so couldn't be correct.
Question 3 Explanation: 
Topic: Use GCF in real-world context (Objective 0018)
Question 4

How many lines of reflective symmetry and how many centers of rotational symmetry does the parallelogram depicted below have?

 
A

4 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
B

2 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
C

0 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
The intersection of the diagonals is a center of rotational symmetry. There are no lines of reflective symmetry, although many people get confused about this fact (best to play with hands on examples to get a feel). Just fyi, the letter S also has rotational, but not reflective symmetry, and it's one that kids often write backwards.
D

2 lines of reflective symmetry, 0 centers of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper. Trace onto another sheet of paper. See if there's a way to rotate the cut out shape (less than a complete turn) so that it fits within the outlines again.
Question 4 Explanation: 
Topic: Analyze geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry (Objective 0024).
Question 5

What is the greatest common factor of 540 and 216?

A
\( \large{{2}^{2}}\cdot {{3}^{3}}\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then take the smaller power for each prime that is a factor of both numbers.
B
\( \large2\cdot 3\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
C
\( \large{{2}^{3}}\cdot {{3}^{3}}\)
Hint:
\(2^3 = 8\) is not a factor of 540.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
Question 5 Explanation: 
Topic: Find the greatest common factor of a set of numbers (Objective 0018).
Question 6

What is the perimeter of a right triangle with legs of lengths x and 2x?

A
\( \large 6x\)
Hint:
Use the Pythagorean Theorem.
B
\( \large 3x+5{{x}^{2}}\)
Hint:
Don't forget to take square roots when you use the Pythagorean Theorem.
C
\( \large 3x+\sqrt{5}{{x}^{2}}\)
Hint:
\(\sqrt {5 x^2}\) is not \(\sqrt {5}x^2\).
D
\( \large 3x+\sqrt{5}{{x}^{{}}}\)
Hint:
To find the hypotenuse, h, use the Pythagorean Theorem: \(x^2+(2x)^2=h^2.\) \(5x^2=h^2,h=\sqrt{5}x\). The perimeter is this plus x plus 2x.
Question 6 Explanation: 
Topic: Recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 7

A cylindrical soup can has diameter 7 cm and height 11 cm. The can holds g grams of soup.   How many grams of the same soup could a cylindrical can with diameter 14 cm and height 33 cm hold?

A
\( \large 6g\)
Hint:
You must scale in all three dimensions.
B
\( \large 12g\)
Hint:
Height is multiplied by 3, and diameter and radius are multiplied by 2. Since the radius is squared, final result is multiplied by \(2^2\times 3=12\).
C
\( \large 18g\)
Hint:
Don't square the height scale factor.
D
\( \large 36g\)
Hint:
Don't square the height scale factor.
Question 7 Explanation: 
Topic: Determine how the characteristics (e.g., area, volume) of geometric figures and shapes are affected by changes in their dimensions (Objective 0023).
Question 8

If  x  is an integer, which of the following must also be an integer?

A
\( \large \dfrac{x}{2}\)
Hint:
If x is odd, then \( \dfrac{x}{2} \) is not an integer, e.g. 3/2 = 1.5.
B
\( \large \dfrac{2}{x}\)
Hint:
Only an integer if x = -2, -1, 1, or 2.
C
\( \large-x\)
Hint:
-1 times any integer is still an integer.
D
\(\large\sqrt{x}\)
Hint:
Usually not an integer, e.g. \( \sqrt{2} \approx 1.414 \).
Question 8 Explanation: 
Topic: Integers (Objective 0016)
Question 9

Use the samples of a student's work below to answer the question that follows:

\( \large \dfrac{2}{3}\times \dfrac{3}{4}=\dfrac{4\times 2}{3\times 3}=\dfrac{8}{9}\) \( \large \dfrac{2}{5}\times \dfrac{7}{7}=\dfrac{7\times 2}{5\times 7}=\dfrac{2}{5}\) \( \large \dfrac{7}{6}\times \dfrac{3}{4}=\dfrac{4\times 7}{6\times 3}=\dfrac{28}{18}=\dfrac{14}{9}\)

Which of the following best describes the mathematical validity of the algorithm the student is using?

A

It is not valid. It never produces the correct answer.

Hint:
In the middle example,the answer is correct.
B

It is not valid. It produces the correct answer in a few special cases, but it‘s still not a valid algorithm.

Hint:
Note that this algorithm gives a/b divided by c/d, not a/b x c/d, but some students confuse multiplication and cross-multiplication. If a=0 or if c/d =1, division and multiplication give the same answer.
C

It is valid if the rational numbers in the multiplication problem are in lowest terms.

Hint:
Lowest terms is irrelevant.
D

It is valid for all rational numbers.

Hint:
Can't be correct as the first and last examples have the wrong answers.
Question 9 Explanation: 
Topic: Analyze Non-Standard Computational Algorithms (Objective 0019).
Question 10

Some children explored the diagonals in 2 x 2 squares on pages of a calendar (where all four squares have numbers in them).  They conjectured that the sum of the diagonals is always equal; in the example below, 8+16=9+15.

 

Which of the equations below could best be used to explain why the children's conjecture is correct?

A
\( \large 8x+16x=9x+15x\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
B
\( \large x+(x+2)=(x+1)+(x+1)\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
C
\( \large x+(x+8)=(x+1)+(x+7)\)
Hint:
x is the number in the top left square, x+8 is one below and to the right, x+1 is to the right of x, and x+7 is below x.
D
\( \large x+8+16=x+9+15\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
Question 10 Explanation: 
Topic: Recognize and apply the concepts of variable, equality, and equation to express relationships algebraically (Objective 0020).
Question 11

Which of the numbers below is the decimal equivalent of \( \dfrac{3}{8}?\)

A

0.38

Hint:
If you are just writing the numerator next to the denominator then your technique is way off, but by coincidence your answer is close; try with 2/3 and 0.23 is nowhere near correct.
B

0.125

Hint:
This is 1/8, not 3/8.
C

0.375

D

0.83

Hint:
3/8 is less than a half, and 0.83 is more than a half, so they can't be equal.
Question 11 Explanation: 
Topic: Converting between fractions and decimals (Objective 0017)
Question 12

Use the graph below to answer the question that follows.

If the polygon shown above is reflected about the y axis and then rotated 90 degrees clockwise about the origin, which of the following graphs is the result?

A
Hint:
Try following the point (1,4) to see where it goes after each transformation.
B
C
Hint:
Make sure you're reflecting in the correct axis.
D
Hint:
Make sure you're rotating the correct direction.
Question 12 Explanation: 
Topic: Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry, similarity, and congruence; and use these concepts to solve problems (Objective 0024).
Question 13

The letters A, and B represent digits (possibly equal) in the ten digit number x=1,438,152,A3B.   For which values of A and B is x divisible by 12, but not by 9?

A
\( \large A = 0, B = 4\)
Hint:
Digits add to 31, so not divisible by 3, so not divisible by 12.
B
\( \large A = 7, B = 2\)
Hint:
Digits add to 36, so divisible by 9.
C
\( \large A = 0, B = 6\)
Hint:
Digits add to 33, divisible by 3, not 9. Last digits are 36, so divisible by 4, and hence by 12.
D
\( \large A = 4, B = 8\)
Hint:
Digits add to 39, divisible by 3, not 9. Last digits are 38, so not divisible by 4, so not divisible by 12.
Question 13 Explanation: 
Topic: Demonstrate knowledge of divisibility rules (Objective 0018).
Question 14

In each expression below  N represents a negative integer. Which expression could have a negative value?

A
\( \large {{N}^{2}}\)
Hint:
Squaring always gives a non-negative value.
B
\( \large 6-N\)
Hint:
A story problem for this expression is, if it was 6 degrees out at noon and N degrees out at sunrise, by how many degrees did the temperature rise by noon? Since N is negative, the answer to this question has to be positive, and more than 6.
C
\( \large -N\)
Hint:
If N is negative, then -N is positive
D
\( \large 6+N\)
Hint:
For example, if \(N=-10\), then \(6+N = -4\)
Question 14 Explanation: 
If you are stuck on a question like this, try a few examples to eliminate some choices and to help you understand what the question means. Topic: Characteristics of integers (Objective 0016).
Question 15

The table below gives data from various years on how many young girls drank milk.

Based on the data given above, what was the probability that a randomly chosen girl in 1990 drank milk?

A
\( \large \dfrac{502}{1222}\)
Hint:
This is the probability that a randomly chosen girl who drinks milk was in the 1989-1991 food survey.
B
\( \large \dfrac{502}{2149}\)
Hint:
This is the probability that a randomly chosen girl from the whole survey drank milk and was also surveyed in 1989-1991.
C
\( \large \dfrac{502}{837}\)
D
\( \large \dfrac{1222}{2149}\)
Hint:
This is the probability that a randomly chosen girl from any year of the survey drank milk.
Question 15 Explanation: 
Topic: Recognize and apply the concept of conditional probability (Objective 0026).
Question 16

P is a prime number that divides 240.  Which of the following must be true?

A

P divides 30

Hint:
2, 3, and 5 are the prime factors of 240, and all divide 30.
B

P divides 48

Hint:
P=5 doesn't work.
C

P divides 75

Hint:
P=2 doesn't work.
D

P divides 80

Hint:
P=3 doesn't work.
Question 16 Explanation: 
Topic: Find the prime factorization of a number and recognize its uses (Objective 0018).
Question 17

The equation \( \large F=\frac{9}{5}C+32\) is used to convert a temperature measured in Celsius to the equivalent Farentheit temperature.

A patient's temperature increased by 1.5° Celcius.  By how many degrees Fahrenheit did her temperature increase?

A

1.5°

Hint:
Celsius and Fahrenheit don't increase at the same rate.
B

1.8°

Hint:
That's how much the Fahrenheit temp increases when the Celsius temp goes up by 1 degree.
C

2.7°

Hint:
Each degree increase in Celsius corresponds to a \(\dfrac{9}{5}=1.8\) degree increase in Fahrenheit. Thus the increase is 1.8+0.9=2.7.
D

Not enough information.

Hint:
A linear equation has constant slope, which means that every increase of the same amount in one variable, gives a constant increase in the other variable. It doesn't matter what temperature the patient started out at.
Question 17 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 18

The speed of sound in dry air at 68 degrees F is 343.2 meters per second.  Which of the expressions below could be used to compute the number of kilometers that a sound wave travels in 10 minutes (in dry air at 68 degrees F)?

A
\( \large 343.2\times 60\times 10\)
Hint:
In kilometers, not meters.
B
\( \large 343.2\times 60\times 10\times \dfrac{1}{1000}\)
Hint:
Units are meters/sec \(\times\) seconds/minute \(\times\) minutes \(\times\) kilometers/meter, and the answer is in kilometers.
C
\( \large 343.2\times \dfrac{1}{60}\times 10\)
Hint:
Include units and make sure answer is in kilometers.
D
\( \large 343.2\times \dfrac{1}{60}\times 10\times \dfrac{1}{1000}\)
Hint:
Include units and make sure answer is in kilometers.
Question 18 Explanation: 
Topic: Use unit conversions and dimensional analysis to solve measurement problems (Objective 0023).
Question 19

The column below consists of two cubes and a cylinder.  The cylinder has diameter y, which is also the length of the sides of each cube.   The total height of the column is 5y.  Which of the formulas below gives the volume of the column?

 
A
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{4}\)
Hint:
The cubes each have volume \(y^3\). The cylinder has radius \(\dfrac{y}{2}\) and height \(3y\). The volume of a cylinder is \(\pi r^2 h=\pi ({\dfrac{y}{2}})^2(3y)=\dfrac{3\pi {{y}^{3}}}{4}\). Note that the volume of a cylinder is analogous to that of a prism -- area of the base times height.
B
\( \large 2{{y}^{3}}+3\pi {{y}^{3}}\)
Hint:
y is the diameter of the circle, not the radius.
C
\( \large {{y}^{3}}+5\pi {{y}^{3}}\)
Hint:
Don't forget to count both cubes.
D
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{8}\)
Hint:
Make sure you know how to find the volume of a cylinder.
Question 19 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
Question 20

Use the expression below to answer the question that follows:

                 \( \large \dfrac{\left( 7,154 \right)\times \left( 896 \right)}{216}\)

Which of the following is the best estimate of the expression above?

A

2,000

Hint:
The answer is bigger than 7,000.
B

20,000

Hint:
Estimate 896/216 first.
C

3,000

Hint:
The answer is bigger than 7,000.
D

30,000

Hint:
\( \dfrac{896}{216} \approx 4\) and \(7154 \times 4\) is over 28,000, so this answer is closest.
Question 20 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016, overlaps with other objectives).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.