Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

What set of transformations will transform the leftmost image into the rightmost image?

 
A

A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.

Hint:
Part of the figure would move below the x-axis with these transformations.
B

A translation 3 units up, followed by a reflection about the line y=x.

Hint:
See what happens to the point (5,1) under this set of transformations.
C

A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up.

D

A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.

Hint:
See what happens to the point (3,3) under this set of transformations.
Question 1 Explanation: 
Topic:Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations) (Objective 0024).
Question 2

The chart below gives percentiles for the number of sit-ups that boys of various ages can do in 60 seconds (source , June 24, 2011)

 

Which of the following statements can be inferred from the above chart?

A

95% of 12 year old boys can do 56 sit-ups in 60 seconds.

Hint:
The 95th percentile means that 95% of scores are less than or equal to 56, and 5% are greater than or equal to 56.
B

At most 25% of 7 year old boys can do 19 or more sit-ups in 60 seconds.

Hint:
The 25th percentile means that 25% of scores are less than or equal to 19, and 75% are greater than or equal to 19.
C

Half of all 13 year old boys can do less than 41 sit-ups in 60 seconds and half can do more than 41 sit-ups in 60 seconds.

Hint:
Close, but not quite. There's no accounting for boys who can do exactly 41 sit ups. Look at these data: 10, 20, 41, 41, 41, 41, 50, 60, 90. The median is 41, but more than half can do 41 or more.
D

At least 75% of 16 year old boys can only do 51 or fewer sit-ups in 60 seconds.

Hint:
The "at least" is necessary due to duplicates. Suppose the data were 10, 20, 51, 51. The 75th percentile is 51, but 100% of the boys can only do 51 or fewer situps.
Question 2 Explanation: 
Topic: Analyze and interpret various graphic and nongraphic data representations (e.g., frequency distributions, percentiles) (Objective 0025).
Question 3

Use the problem below to answer the question that follows:

T shirts are on sale for 20% off. Tasha paid $8.73 for a shirt.  What is the regular price of the shirt? There is no tax on clothing purchases under $175.

Let p represent the regular price of these t-shirt. Which of the following equations is correct?

A
\( \large 0.8p=\$8.73\)
Hint:
80% of the regular price = $8.73.
B
\( \large \$8.73+0.2*\$8.73=p\)
Hint:
The 20% off was off of the ORIGINAL price, not off the $8.73 (a lot of people make this mistake). Plus this is the same equation as in choice c.
C
\( \large 1.2*\$8.73=p\)
Hint:
The 20% off was off of the ORIGINAL price, not off the $8.73 (a lot of people make this mistake). Plus this is the same equation as in choice b.
D
\( \large p-0.2*\$8.73=p\)
Hint:
Subtract p from both sides of this equation, and you have -.2 x 8.73 =0.
Question 3 Explanation: 
Topics: Use algebra to solve word problems involving percents and identify variables, and derive algebraic expressions that represent real-world situations (Objective 0020).
Question 4

Use the table below to answer the question that follows:

Gordon wants to buy three pounds of nuts.  Each of the stores above ordinarily sells the nuts for $4.99 a pound, but is offering a discount this week.  At which store can he buy the nuts for the least amount of money?

A

Store A

Hint:
This would save about $2.50. You can quickly see that D saves more.
B

Store B

Hint:
This saves 15% and C saves 25%.
C

Store C

D

Store D

Hint:
This is about 20% off, which is less of a discount than C.
Question 4 Explanation: 
Topic: Understand the meanings and models of integers, fractions, decimals,percents, and mixed numbers and apply them to the solution of word problems (Objective 0017).
Question 5

The picture below shows identical circles drawn on a piece of paper.  The rectangle represents an index card that is blocking your view of \( \dfrac{3}{5}\) of the circles on the paper.  How many circles are covered by the rectangle?

A

4

Hint:
The card blocks more than half of the circles, so this number is too small.
B

5

Hint:
The card blocks more than half of the circles, so this number is too small.
C

8

Hint:
The card blocks more than half of the circles, so this number is too small.
D

12

Hint:
2/5 of the circles or 8 circles are showing. Thus 4 circles represent 1/5 of the circles, and \(4 \times 5=20\) circles represent 5/5 or all the circles. Thus 12 circles are hidden.
Question 5 Explanation: 
Topic: Models of Fractions (Objective 0017)
Question 6

Use the table below to answer the question that follows:

Each number in the table above represents a value W that is determined by the values of x and y.  For example, when x=3 and y=1, W=5.  What is the value of W when x=9 and y=14?  Assume that the patterns in the table continue as shown.

A
\( \large W=-5\)
Hint:
When y is even, W is even.
B
\( \large W=4\)
Hint:
Note that when x increases by 1, W increases by 2, and when y increases by 1, W decreases by 1. At x=y=0, W=0, so at x=9, y=14, W has increased by \(9 \times 2\) and decreased by 14, or W=18-14=4.
C
\( \large W=6\)
Hint:
Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0.
D
\( \large W=32\)
Hint:
Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0.
Question 6 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic) (Objective 0021)
Question 7

Which of the following is not possible?

A

An equiangular triangle that is not equilateral.

Hint:
The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral.
B

An equiangular quadrilateral that is not equilateral.

Hint:
A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length).
C

An equilateral quadrilateral that is not equiangular.

Hint:
This rhombus has equal sides, but it doesn't have equal angles:
D

An equiangular hexagon that is not equilateral.

Hint:
This hexagon has equal angles, but it doesn't have equal sides:
Question 7 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles (Objective 0024).
Question 8

Which of the following is equivalent to \(  \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}?\)

A
\( \large \dfrac{7}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
B
\( \large \dfrac{1}{2}\)
Hint:
Addition and subtraction are of equal priority in the order of operations -- do them left to right.
C
\( \large \dfrac{3}{4}\)
Hint:
\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}\)=\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}+-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}\)
D
\( \large \dfrac{3}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
Question 8 Explanation: 
Topic: Operations on Fractions, Order of Operations (Objective 0019).
Question 9

Four children randomly line up, single file.  What is the probability that they are in height order, with the shortest child in front?   All of the children are different heights.

A
\( \large \dfrac{1}{4}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
B
\( \large \dfrac{1}{256} \)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
C
\( \large \dfrac{1}{16}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
D
\( \large \dfrac{1}{24}\)
Hint:
The number of ways for the children to line up is \(4!=4 \times 3 \times 2 \times 1 =24\) -- there are 4 choices for who is first in line, then 3 for who is second, etc. Only one of these lines has the children in the order specified.
Question 9 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Question 10

Which of the following nets will not fold into a cube?

A
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
B
C
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
D
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
Question 10 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 11

On a map the distance from Boston to Detroit is 6 cm, and these two cities are 702 miles away from each other. Assuming the scale of the map is the same throughout, which answer below is closest to the distance between Boston and San Francisco on the map, given that they are 2,708 miles away from each other?

A

21 cm

Hint:
How many miles would correspond to 24 cm on the map? Try adjusting from there.
B

22 cm

Hint:
How many miles would correspond to 24 cm on the map? Try adjusting from there.
C

23 cm

Hint:
One way to solve this without a calculator is to note that 4 groups of 6 cm is 2808 miles, which is 100 miles too much. Then 100 miles would be about 1/7 th of 6 cm, or about 1 cm less than 24 cm.
D

24 cm

Hint:
4 groups of 6 cm is over 2800 miles on the map, which is too much.
Question 11 Explanation: 
Topic: Apply proportional thinking to estimate quantities in real world situations (Objective 0019).
Question 12

The Americans with Disabilties Act (ADA) regulations state that the maximum slope for a wheelchair ramp in new construction is 1:12, although slopes between 1:16 and 1:20 are preferred.  The maximum rise for any run is 30 inches.   The graph below shows the rise and runs of four different wheelchair ramps.  Which ramp is in compliance with the ADA regulations for new construction?

A

A

Hint:
Rise is more than 30 inches.
B

B

Hint:
Run is almost 24 feet, so rise can be almost 2 feet.
C

C

Hint:
Run is 12 feet, so rise can be at most 1 foot.
D

D

Hint:
Slope is 1:10 -- too steep.
Question 12 Explanation: 
Topic: Interpret meaning of slope in a real world situation (Objective 0022).
Question 13

Here is a method that a student used for subtraction:

Which of the following is correct?

A

The student used a method that worked for this problem and can be generalized to any subtraction problem.

Hint:
Note that this algorithm is taught as the "standard" algorithm in much of Europe (it's where the term "borrowing" came from -- you borrow on top and "pay back" on the bottom).
B

The student used a method that worked for this problem and that will work for any subtraction problem that only requires one regrouping; it will not work if more regrouping is required.

Hint:
Try some more examples.
C

The student used a method that worked for this problem and will work for all three-digit subtraction problems, but will not work for larger problems.

Hint:
Try some more examples.
D

The student used a method that does not work. The student made two mistakes that cancelled each other out and was lucky to get the right answer for this problem.

Hint:
Remember, there are many ways to do subtraction; there is no one "right" algorithm.
Question 13 Explanation: 
Topic: Analyze and justify standard and non-standard computational techniques (Objective 0019).
Question 14

Which of the following points is closest to \( \dfrac{34}{135} \times \dfrac{53}{86}\)?

A

A

Hint:
\(\frac{34}{135} \approx \frac{1}{4}\) and \( \frac{53}{86} \approx \frac {2}{3}\). \(\frac {1}{4}\) of \(\frac {2}{3}\) is small and closest to A.
B

B

Hint:
Estimate with simpler fractions.
C

C

Hint:
Estimate with simpler fractions.
D

D

Hint:
Estimate with simpler fractions.
Question 14 Explanation: 
Topic: Understand meaning and models of operations on fractions (Objective 0019).
Question 15

The expression \( \large {{7}^{-4}}\cdot {{8}^{-6}}\) is equal to which of the following?

A
\( \large \dfrac{8}{{{\left( 56 \right)}^{4}}}\)
Hint:
The bases are whole numbers, and the exponents are negative. How can the numerator be 8?
B
\( \large \dfrac{64}{{{\left( 56 \right)}^{4}}}\)
Hint:
The bases are whole numbers, and the exponents are negative. How can the numerator be 64?
C
\( \large \dfrac{1}{8\cdot {{\left( 56 \right)}^{4}}}\)
Hint:
\(8^{-6}=8^{-4} \times 8^{-2}\)
D
\( \large \dfrac{1}{64\cdot {{\left( 56 \right)}^{4}}}\)
Question 15 Explanation: 
Topics: Laws of exponents (Objective 0019).
Question 16

Which of the following sets of polygons can be assembled to form a pentagonal pyramid?

A

2 pentagons and 5 rectangles.

Hint:
These can be assembled to form a pentagonal prism, not a pentagonal pyramid.
B

1 square and 5 equilateral triangles.

Hint:
You need a pentagon for a pentagonal pyramid.
C

1 pentagon and 5 isosceles triangles.

D

1 pentagon and 10 isosceles triangles.

Question 16 Explanation: 
Topic:Classify and analyze three-dimensional figures using attributes of faces, edges, and vertices (Objective 0024).
Question 17

A map has a scale of 3 inches = 100 miles.  Cities A and B are 753 miles apart.  Let d be the distance between the two cities on the map.  Which of the following is not correct?

A
\( \large \dfrac{3}{100}=\dfrac{d}{753}\)
Hint:
Units on both side are inches/mile, and both numerators and denominators correspond -- this one is correct.
B
\( \large \dfrac{3}{100}=\dfrac{753}{d}\)
Hint:
Unit on the left is inches per mile, and on the right is miles per inch. The proportion is set up incorrectly (which is what we wanted). Another strategy is to notice that one of A or B has to be the answer because they cannot both be correct proportions. Then check that cross multiplying on A gives part D, so B is the one that is different from the other 3.
C
\( \large \dfrac{3}{d}=\dfrac{100}{753}\)
Hint:
Unitless on each side, as inches cancel on the left and miles on the right. Numerators correspond to the map, and denominators to the real life distances -- this one is correct.
D
\( \large 100d=3\cdot 753\)
Hint:
This is equivalent to part A.
Question 17 Explanation: 
Topic: Analyze the relationships among proportions, constant rates, and linear functions (Objective 0022).
Question 18

P is a prime number that divides 240.  Which of the following must be true?

A

P divides 30

Hint:
2, 3, and 5 are the prime factors of 240, and all divide 30.
B

P divides 48

Hint:
P=5 doesn't work.
C

P divides 75

Hint:
P=2 doesn't work.
D

P divides 80

Hint:
P=3 doesn't work.
Question 18 Explanation: 
Topic: Find the prime factorization of a number and recognize its uses (Objective 0018).
Question 19

The speed of sound in dry air at 68 degrees F is 343.2 meters per second.  Which of the expressions below could be used to compute the number of kilometers that a sound wave travels in 10 minutes (in dry air at 68 degrees F)?

A
\( \large 343.2\times 60\times 10\)
Hint:
In kilometers, not meters.
B
\( \large 343.2\times 60\times 10\times \dfrac{1}{1000}\)
Hint:
Units are meters/sec \(\times\) seconds/minute \(\times\) minutes \(\times\) kilometers/meter, and the answer is in kilometers.
C
\( \large 343.2\times \dfrac{1}{60}\times 10\)
Hint:
Include units and make sure answer is in kilometers.
D
\( \large 343.2\times \dfrac{1}{60}\times 10\times \dfrac{1}{1000}\)
Hint:
Include units and make sure answer is in kilometers.
Question 19 Explanation: 
Topic: Use unit conversions and dimensional analysis to solve measurement problems (Objective 0023).
Question 20

In each expression below  N represents a negative integer. Which expression could have a negative value?

A
\( \large {{N}^{2}}\)
Hint:
Squaring always gives a non-negative value.
B
\( \large 6-N\)
Hint:
A story problem for this expression is, if it was 6 degrees out at noon and N degrees out at sunrise, by how many degrees did the temperature rise by noon? Since N is negative, the answer to this question has to be positive, and more than 6.
C
\( \large -N\)
Hint:
If N is negative, then -N is positive
D
\( \large 6+N\)
Hint:
For example, if \(N=-10\), then \(6+N = -4\)
Question 20 Explanation: 
If you are stuck on a question like this, try a few examples to eliminate some choices and to help you understand what the question means. Topic: Characteristics of integers (Objective 0016).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.