Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

Cell phone plan A charges $3 per month plus $0.10 per minute. Cell phone plan B charges $29.99 per month, with no fee for the first 400 minutes and then $0.20 for each additional minute.

Which equation can be used to solve for the number of minutes, m (with m>400) that a person would have to spend on the phone each month in order for the bills for plan A and plan B to be equal?

A
\( \large 3.10m=400+0.2m\)
Hint:
These are the numbers in the problem, but this equation doesn't make sense. If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
B
\( \large 3+0.1m=29.99+.20m\)
Hint:
Doesn't account for the 400 free minutes.
C
\( \large 3+0.1m=400+29.99+.20(m-400)\)
Hint:
Why would you add 400 minutes and $29.99? If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
D
\( \large 3+0.1m=29.99+.20(m-400)\)
Hint:
The left side is $3 plus $0.10 times the number of minutes. The right is $29.99 plus $0.20 times the number of minutes over 400.
Question 1 Explanation: 
Identify variables and derive algebraic expressions that represent real-world situations (Objective 0020).
Question 2

Which of the following is not possible?

A

An equiangular triangle that is not equilateral.

Hint:
The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral.
B

An equiangular quadrilateral that is not equilateral.

Hint:
A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length).
C

An equilateral quadrilateral that is not equiangular.

Hint:
This rhombus has equal sides, but it doesn't have equal angles:
D

An equiangular hexagon that is not equilateral.

Hint:
This hexagon has equal angles, but it doesn't have equal sides:
Question 2 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles (Objective 0024).
Question 3

Which of the following is closest to the height of a college student in centimeters?

A

1.6 cm

Hint:
This is more the height of a Lego toy college student -- less than an inch!
B

16 cm

Hint:
Less than knee high on most college students.
C

160 cm

Hint:
Remember, a meter stick (a little bigger than a yard stick) is 100 cm. Also good to know is that 4 inches is approximately 10 cm.
D

1600 cm

Hint:
This college student might be taller than some campus buildings!
Question 3 Explanation: 
Topic: Estimate and calculate measurements using customary, metric, and nonstandard units of measurement (Objective 0023).
Question 4

What set of transformations will transform the leftmost image into the rightmost image?

 
A

A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.

Hint:
Part of the figure would move below the x-axis with these transformations.
B

A translation 3 units up, followed by a reflection about the line y=x.

Hint:
See what happens to the point (5,1) under this set of transformations.
C

A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up.

D

A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.

Hint:
See what happens to the point (3,3) under this set of transformations.
Question 4 Explanation: 
Topic:Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations) (Objective 0024).
Question 5

How many lines of reflective symmetry and how many centers of rotational symmetry does the parallelogram depicted below have?

 
A

4 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
B

2 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
C

0 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
The intersection of the diagonals is a center of rotational symmetry. There are no lines of reflective symmetry, although many people get confused about this fact (best to play with hands on examples to get a feel). Just fyi, the letter S also has rotational, but not reflective symmetry, and it's one that kids often write backwards.
D

2 lines of reflective symmetry, 0 centers of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper. Trace onto another sheet of paper. See if there's a way to rotate the cut out shape (less than a complete turn) so that it fits within the outlines again.
Question 5 Explanation: 
Topic: Analyze geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry (Objective 0024).
Question 6

What fraction of the area of the picture below is shaded?

A
\( \large \dfrac{17}{24}\)
Hint:
You might try adding segments so each quadrant is divided into 6 pieces with equal area -- there will be 24 regions, not all the same shape, but all the same area, with 17 of them shaded (for the top left quarter, you could also first change the diagonal line to a horizontal or vertical line that divides the square in two equal pieces and shade one) .
B
\( \large \dfrac{3}{4}\)
Hint:
Be sure you're taking into account the different sizes of the pieces.
C
\( \large \dfrac{2}{3}\)
Hint:
The bottom half of the picture is 2/3 shaded, and the top half is more than 2/3 shaded, so this answer is too small.
D
\( \large \dfrac{17}{6} \)
Hint:
This answer is bigger than 1, so doesn't make any sense. Be sure you are using the whole picture, not one quadrant, as the unit.
Question 6 Explanation: 
Topic: Models of Fractions (Objective 0017)
Question 7

Elena is going to use a calculator to check whether or not 267 is prime. She will pick certain divisors, and then find 267 divided by each, and see if she gets a whole number. If she never gets a whole number, then she's found a prime. Which numbers does Elena NEED to check before she can stop checking and be sure she has a prime?

A

All natural numbers from 2 to 266.

Hint:
She only needs to check primes -- checking the prime factors of any composite is enough to look for divisors. As a test taking strategy, the other three choices involve primes, so worth thinking about.
B

All primes from 2 to 266 .

Hint:
Remember, factors come in pairs (except for square root factors), so she would first find the smaller of the pair and wouldn't need to check the larger.
C

All primes from 2 to 133 .

Hint:
She doesn't need to check this high. Factors come in pairs, and something over 100 is going to be paired with something less than 3, so she will find that earlier.
D

All primes from \( \large 2\) to \( \large \sqrt{267}\).

Hint:
\(\sqrt{267} \times \sqrt{267}=267\). Any other pair of factors will have one factor less than \( \sqrt{267}\) and one greater, so she only needs to check up to \( \sqrt{267}\).
Question 7 Explanation: 
Topic: Identify prime and composite numbers (Objective 0018).
Question 8

The letters A, and B represent digits (possibly equal) in the ten digit number x=1,438,152,A3B.   For which values of A and B is x divisible by 12, but not by 9?

A
\( \large A = 0, B = 4\)
Hint:
Digits add to 31, so not divisible by 3, so not divisible by 12.
B
\( \large A = 7, B = 2\)
Hint:
Digits add to 36, so divisible by 9.
C
\( \large A = 0, B = 6\)
Hint:
Digits add to 33, divisible by 3, not 9. Last digits are 36, so divisible by 4, and hence by 12.
D
\( \large A = 4, B = 8\)
Hint:
Digits add to 39, divisible by 3, not 9. Last digits are 38, so not divisible by 4, so not divisible by 12.
Question 8 Explanation: 
Topic: Demonstrate knowledge of divisibility rules (Objective 0018).
Question 9

The Americans with Disabilties Act (ADA) regulations state that the maximum slope for a wheelchair ramp in new construction is 1:12, although slopes between 1:16 and 1:20 are preferred.  The maximum rise for any run is 30 inches.   The graph below shows the rise and runs of four different wheelchair ramps.  Which ramp is in compliance with the ADA regulations for new construction?

A

A

Hint:
Rise is more than 30 inches.
B

B

Hint:
Run is almost 24 feet, so rise can be almost 2 feet.
C

C

Hint:
Run is 12 feet, so rise can be at most 1 foot.
D

D

Hint:
Slope is 1:10 -- too steep.
Question 9 Explanation: 
Topic: Interpret meaning of slope in a real world situation (Objective 0022).
Question 10

In January 2011, the national debt was about 14 trillion dollars and the US population was about 300 million people.  Someone reading these figures estimated that the national debt was about $5,000 per person.   Which of these statements best describes the reasonableness of this estimate?

A

It is too low by a factor of 10

Hint:
14 trillion \( \approx 15 \times {{10}^{12}} \) and 300 million \( \approx 3 \times {{10}^{8}}\), so the true answer is about \( 5 \times {{10}^{4}} \) or $50,000.
B

It is too low by a factor of 100

C

It is too high by a factor of 10

D

It is too high by a factor of 100

Question 10 Explanation: 
Topics: Estimation, Scientific Notation in the real world (Objective 0016).
Question 11

The chart below gives percentiles for the number of sit-ups that boys of various ages can do in 60 seconds (source , June 24, 2011)

 

Which of the following statements can be inferred from the above chart?

A

95% of 12 year old boys can do 56 sit-ups in 60 seconds.

Hint:
The 95th percentile means that 95% of scores are less than or equal to 56, and 5% are greater than or equal to 56.
B

At most 25% of 7 year old boys can do 19 or more sit-ups in 60 seconds.

Hint:
The 25th percentile means that 25% of scores are less than or equal to 19, and 75% are greater than or equal to 19.
C

Half of all 13 year old boys can do less than 41 sit-ups in 60 seconds and half can do more than 41 sit-ups in 60 seconds.

Hint:
Close, but not quite. There's no accounting for boys who can do exactly 41 sit ups. Look at these data: 10, 20, 41, 41, 41, 41, 50, 60, 90. The median is 41, but more than half can do 41 or more.
D

At least 75% of 16 year old boys can only do 51 or fewer sit-ups in 60 seconds.

Hint:
The "at least" is necessary due to duplicates. Suppose the data were 10, 20, 51, 51. The 75th percentile is 51, but 100% of the boys can only do 51 or fewer situps.
Question 11 Explanation: 
Topic: Analyze and interpret various graphic and nongraphic data representations (e.g., frequency distributions, percentiles) (Objective 0025).
Question 12

Here is a mental math strategy for computing 26 x 16:

Step 1: 100 x 16 = 1600

Step 2: 25 x 16 = 1600 ÷· 4 = 400

Step 3: 26 x 16 = 400 + 16 = 416

Which property best justifies Step 3 in this strategy?

A

Commutative Property.

Hint:
For addition, the commutative property is \(a+b=b+a\) and for multiplication it's \( a \times b = b \times a\).
B

Associative Property.

Hint:
For addition, the associative property is \((a+b)+c=a+(b+c)\) and for multiplication it's \((a \times b) \times c=a \times (b \times c)\)
C

Identity Property.

Hint:
0 is the additive identity, because \( a+0=a\) and 1 is the multiplicative identity because \(a \times 1=a\). The phrase "identity property" is not standard.
D

Distributive Property.

Hint:
\( (25+1) \times 16 = 25 \times 16 + 1 \times 16 \). This is an example of the distributive property of multiplication over addition.
Question 12 Explanation: 
Topic: Analyze and justify mental math techniques, by applying arithmetic properties such as commutative, distributive, and associative (Objective 0019). Note that it's hard to write a question like this as a multiple choice question -- worthwhile to understand why the other steps work too.
Question 13

The prime factorization of  n can be written as n=pqr, where p, q, and r are distinct prime numbers.  How many factors does n have, including 1 and itself?

A
\( \large3\)
Hint:
1, p, q, r, and pqr are already 5, so this isn't enough. You might try plugging in p=2, q=3, and r=5 to help with this problem.
B
\( \large5\)
Hint:
Don't forget pq, etc. You might try plugging in p=2, q=3, and r=5 to help with this problem.
C
\( \large6\)
Hint:
You might try plugging in p=2, q=3, and r=5 to help with this problem.
D
\( \large8\)
Hint:
1, p, q, r, pq, pr, qr, pqr.
Question 13 Explanation: 
Topic: Recognize uses of prime factorization of a number (Objective 0018).
Question 14

Use the expression below to answer the question that follows.

                 \( \large \dfrac{\left( 4\times {{10}^{3}} \right)\times \left( 3\times {{10}^{4}} \right)}{6\times {{10}^{6}}}\)

Which of the following is equivalent to the expression above?

A

2

Hint:
\(10^3 \times 10^4=10^7\), and note that if you're guessing when the answers are so closely related, you're generally better off guessing one of the middle numbers.
B

20

Hint:
\( \dfrac{\left( 4\times {{10}^{3}} \right)\times \left( 3\times {{10}^{4}} \right)}{6\times {{10}^{6}}}=\dfrac {12 \times {{10}^{7}}}{6\times {{10}^{6}}}=\)\(2 \times {{10}^{1}}=20 \)
C

200

Hint:
\(10^3 \times 10^4=10^7\)
D

2000

Hint:
\(10^3 \times 10^4=10^7\), and note that if you're guessing when the answers are so closely related, you're generally better off guessing one of the middle numbers.
Question 14 Explanation: 
Topics: Scientific notation, exponents, simplifying fractions (Objective 0016, although overlaps with other objectives too).
Question 15

Use the problem below to answer the question that follows:

T shirts are on sale for 20% off. Tasha paid $8.73 for a shirt.  What is the regular price of the shirt? There is no tax on clothing purchases under $175.

Let p represent the regular price of these t-shirt. Which of the following equations is correct?

A
\( \large 0.8p=\$8.73\)
Hint:
80% of the regular price = $8.73.
B
\( \large \$8.73+0.2*\$8.73=p\)
Hint:
The 20% off was off of the ORIGINAL price, not off the $8.73 (a lot of people make this mistake). Plus this is the same equation as in choice c.
C
\( \large 1.2*\$8.73=p\)
Hint:
The 20% off was off of the ORIGINAL price, not off the $8.73 (a lot of people make this mistake). Plus this is the same equation as in choice b.
D
\( \large p-0.2*\$8.73=p\)
Hint:
Subtract p from both sides of this equation, and you have -.2 x 8.73 =0.
Question 15 Explanation: 
Topics: Use algebra to solve word problems involving percents and identify variables, and derive algebraic expressions that represent real-world situations (Objective 0020).
Question 16

The "houses" below are made of toothpicks and gum drops.

How many toothpicks are there in a row of 53 houses?

A

212

Hint:
Can the number of toothpicks be even?
B

213

Hint:
One way to see this is that every new "house" adds 4 toothpicks to the leftmost vertical toothpick -- so the total number is 1 plus 4 times the number of "houses." There are many other ways to look at the problem too.
C

217

Hint:
Try your strategy with a smaller number of "houses" so you can count and find your mistake.
D

265

Hint:
Remember that the "houses" overlap some walls.
Question 16 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic). (Objective 0021).
Question 17

Use the graph below to answer the question that follows:

The graph above represents the equation \( \large 3x+Ay=B\), where A and B are integers.  What are the values of A and B?

A
\( \large A = -2, B= 6\)
Hint:
Plug in (2,0) to get B=6, then plug in (0,-3) to get A=-2.
B
\( \large A = 2, B = 6\)
Hint:
Try plugging (0,-3) into this equation.
C
\( \large A = -1.5, B=-3\)
Hint:
The problem said that A and B were integers and -1.5 is not an integer. Don't try to use slope-intercept form.
D
\( \large A = 2, B = -3\)
Hint:
Try plugging (2,0) into this equation.
Question 17 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 18

If  x  is an integer, which of the following must also be an integer?

A
\( \large \dfrac{x}{2}\)
Hint:
If x is odd, then \( \dfrac{x}{2} \) is not an integer, e.g. 3/2 = 1.5.
B
\( \large \dfrac{2}{x}\)
Hint:
Only an integer if x = -2, -1, 1, or 2.
C
\( \large-x\)
Hint:
-1 times any integer is still an integer.
D
\(\large\sqrt{x}\)
Hint:
Usually not an integer, e.g. \( \sqrt{2} \approx 1.414 \).
Question 18 Explanation: 
Topic: Integers (Objective 0016)
Question 19

Which of the following nets will not fold into a cube?

A
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
B
C
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
D
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
Question 19 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 20

A car is traveling at 60 miles per hour.  Which of the expressions below could be used to compute how many feet the car travels in 1 second?  Note that 1 mile = 5,280 feet.

A
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot 60\dfrac{\text{seconds}}{\text{minute}} \)
Hint:
This answer is not in feet/second.
B
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot \dfrac{1}{60}\dfrac{\text{hour}}{\text{minutes}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}} \)
Hint:
This is the only choice where the answer is in feet per second and the unit conversions are correct.
C
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{foot}}{\text{miles}}\cdot 60\dfrac{\text{hours}}{\text{minute}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}\)
Hint:
Are there really 60 hours in a minute?
D
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{mile}}{\text{feet}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}\)
Hint:
This answer is not in feet/second.
Question 20 Explanation: 
Topic: Use unit conversions and dimensional analysis to solve measurement problems (Objective 0023).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.