Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

In each expression below  N represents a negative integer. Which expression could have a negative value?

A
\( \large {{N}^{2}}\)
Hint:
Squaring always gives a non-negative value.
B
\( \large 6-N\)
Hint:
A story problem for this expression is, if it was 6 degrees out at noon and N degrees out at sunrise, by how many degrees did the temperature rise by noon? Since N is negative, the answer to this question has to be positive, and more than 6.
C
\( \large -N\)
Hint:
If N is negative, then -N is positive
D
\( \large 6+N\)
Hint:
For example, if \(N=-10\), then \(6+N = -4\)
Question 1 Explanation: 
If you are stuck on a question like this, try a few examples to eliminate some choices and to help you understand what the question means. Topic: Characteristics of integers (Objective 0016).
Question 2

The letters A, B, and C represent digits (possibly equal) in the twelve digit number x=111,111,111,ABC.  For which values of A, B, and C is x divisible by 40?

A
\( \large A = 3, B = 2, C=0\)
Hint:
Note that it doesn't matter what the first 9 digits are, since 1000 is divisible by 40, so DEF,GHI,JKL,000 is divisible by 40 - we need to check the last 3.
B
\( \large A = 0, B = 0, C=4\)
Hint:
Not divisible by 10, since it doesn't end in 0.
C
\( \large A = 4, B = 2, C=0\)
Hint:
Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 420 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 18, which is not divisible by 8.
D
\( \large A =1, B=0, C=0\)
Hint:
Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 100 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 4, which is not divisible by 8.
Question 2 Explanation: 
Topic: Understand divisibility rules and why they work (Objective 018).
Question 3

Which of the following is equal to one million three hundred thousand?

A
\(\large1.3\times {{10}^{6}}\)
B
\(\large1.3\times {{10}^{9}}\)
Hint:
That's one billion three hundred million.
C
\(\large1.03\times {{10}^{6}}\)
Hint:
That's one million thirty thousand.
D
\(\large1.03\times {{10}^{9}}\)
Hint:
That's one billion thirty million
Question 3 Explanation: 
Topic: Scientific Notation (Objective 0016)
Question 4

Which of the following is the equation of a linear function?

A
\( \large y={{x}^{2}}+2x+7\)
Hint:
This is a quadratic function.
B
\( \large y={{2}^{x}}\)
Hint:
This is an exponential function.
C
\( \large y=\dfrac{15}{x}\)
Hint:
This is an inverse function.
D
\( \large y=x+(x+4)\)
Hint:
This is a linear function, y=2x+4, it's graph is a straight line with slope 2 and y-intercept 4.
Question 4 Explanation: 
Topic: Distinguish between linear and nonlinear functions (Objective 0022).
Question 5

Each individual cube that makes up the rectangular solid depicted below has 6 inch sides.  What is the surface area of the solid in square feet?

 
A
\( \large 11\text{ f}{{\text{t}}^{2}}\)
Hint:
Check your units and make sure you're using feet and inches consistently.
B
\( \large 16.5\text{ f}{{\text{t}}^{2}}\)
Hint:
Each square has surface area \(\dfrac{1}{2} \times \dfrac {1}{2}=\dfrac {1}{4}\) sq feet. There are 9 squares on the top and bottom, and 12 on each of 4 sides, for a total of 66 squares. 66 squares \(\times \dfrac {1}{4}\) sq feet/square =16.5 sq feet.
C
\( \large 66\text{ f}{{\text{t}}^{2}}\)
Hint:
The area of each square is not 1.
D
\( \large 2376\text{ f}{{\text{t}}^{2}}\)
Hint:
Read the question more carefully -- the answer is supposed to be in sq feet, not sq inches.
Question 5 Explanation: 
Topics: Use unit conversions to solve measurement problems, and derive and use formulas for calculating surface areas of geometric shapes and figures (Objective 0023).
Question 6

Here is a student's work solving an equation:

\( x-4=-2x+6\)

\( x-4+4=-2x+6+4\)

\( x=-2x+10\)

\( x-2x=10\)

\( x=10\)

Which of the following statements is true?

A

The student‘s solution is correct.

Hint:
Try plugging into the original solution.
B

The student did not correctly use properties of equality.

Hint:
After \( x=-2x+10\), the student subtracted 2x on the left and added 2x on the right.
C

The student did not correctly use the distributive property.

Hint:
Distributive property is \(a(b+c)=ab+ac\).
D

The student did not correctly use the commutative property.

Hint:
Commutative property is \(a+b=b+a\) or \(ab=ba\).
Question 6 Explanation: 
Topic: Justify algebraic manipulations by application of the properties of equality, the order of operations, the number properties, and the order properties (Objective 0020).
Question 7

Which of the following nets will not fold into a cube?

A
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
B
C
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
D
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
Question 7 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 8

P is a prime number that divides 240.  Which of the following must be true?

A

P divides 30

Hint:
2, 3, and 5 are the prime factors of 240, and all divide 30.
B

P divides 48

Hint:
P=5 doesn't work.
C

P divides 75

Hint:
P=2 doesn't work.
D

P divides 80

Hint:
P=3 doesn't work.
Question 8 Explanation: 
Topic: Find the prime factorization of a number and recognize its uses (Objective 0018).
Question 9

The chairs in a large room can be arranged in rows of 18, 25, or 60 with no chairs left over. If C is the smallest possible number of chairs in the room, which of the following inequalities does C satisfy?

A
\( \large C\le 300\)
Hint:
Find the LCM.
B
\( \large 300 < C \le 500 \)
Hint:
Find the LCM.
C
\( \large 500 < C \le 700 \)
Hint:
Find the LCM.
D
\( \large C>700\)
Hint:
The LCM is 900, which is the smallest number of chairs.
Question 9 Explanation: 
Topic: Apply LCM in "real-world" situations (according to standardized tests....) (Objective 0018).
Question 10

Here is a number trick:

 1) Pick a whole number

 2) Double your number.

 3) Add 20 to the above result.

 4) Multiply the above by 5

 5) Subtract 100

 6) Divide by 10

The result is always the number that you started with! Suppose you start by picking N. Which of the equations below best demonstrates that the result after Step 6 is also N?

A
\( \large N*2+20*5-100\div 10=N\)
Hint:
Use parentheses or else order of operations is off.
B
\( \large \left( \left( 2*N+20 \right)*5-100 \right)\div 10=N\)
C
\( \large \left( N+N+20 \right)*5-100\div 10=N\)
Hint:
With this answer you would subtract 10, instead of subtracting 100 and then dividing by 10.
D
\( \large \left( \left( \left( N\div 10 \right)-100 \right)*5+20 \right)*2=N\)
Hint:
This answer is quite backwards.
Question 10 Explanation: 
Topic: Recognize and apply the concepts of variable, function, equality, and equation to express relationships algebraically (Objective 0020).
Question 11

Which of the following is closest to the height of a college student in centimeters?

A

1.6 cm

Hint:
This is more the height of a Lego toy college student -- less than an inch!
B

16 cm

Hint:
Less than knee high on most college students.
C

160 cm

Hint:
Remember, a meter stick (a little bigger than a yard stick) is 100 cm. Also good to know is that 4 inches is approximately 10 cm.
D

1600 cm

Hint:
This college student might be taller than some campus buildings!
Question 11 Explanation: 
Topic: Estimate and calculate measurements using customary, metric, and nonstandard units of measurement (Objective 0023).
Question 12

What is the perimeter of a right triangle with legs of lengths x and 2x?

A
\( \large 6x\)
Hint:
Use the Pythagorean Theorem.
B
\( \large 3x+5{{x}^{2}}\)
Hint:
Don't forget to take square roots when you use the Pythagorean Theorem.
C
\( \large 3x+\sqrt{5}{{x}^{2}}\)
Hint:
\(\sqrt {5 x^2}\) is not \(\sqrt {5}x^2\).
D
\( \large 3x+\sqrt{5}{{x}^{{}}}\)
Hint:
To find the hypotenuse, h, use the Pythagorean Theorem: \(x^2+(2x)^2=h^2.\) \(5x^2=h^2,h=\sqrt{5}x\). The perimeter is this plus x plus 2x.
Question 12 Explanation: 
Topic: Recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 13

The picture below represents a board with pegs on it, where the closest distance between two pegs is 1 cm.  What is the area of the pentagon shown?

A
\( \large 8\text{ c}{{\text{m}}^{2}} \)
Hint:
Don't just count the dots inside, that doesn't give the area. Try adding segments so that the slanted lines become the diagonals of rectangles.
B
\( \large 11\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
C
\( \large 11.5\text{ c}{{\text{m}}^{2}}\)
Hint:
An easy way to do this problem is to use Pick's Theorem (of course, it's better if you understand why Pick's theorem works): area = # pegs inside + half # pegs on the border - 1. In this case 8+9/2-1=11.5. A more appropriate strategy for elementary classrooms is to add segments; here's one way.

There are 20 1x1 squares enclosed, and the total area of the triangles that need to be subtracted is 8.5
D
\( \large 12.5\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
Question 13 Explanation: 
Topics: Calculate measurements and derive and use formulas for calculating the areas of geometric shapes and figures (Objective 0023).
Question 14

The polygon depicted below is drawn on dot paper, with the dots spaced 1 unit apart.  What is the perimeter of the polygon?

A
\( \large 18+\sqrt{2} \text{ units}\)
Hint:
Be careful with the Pythagorean Theorem.
B
\( \large 18+2\sqrt{2}\text{ units}\)
Hint:
There are 13 horizontal or vertical 1 unit segments. The longer diagonal is the hypotenuse of a 3-4-5 right triangle, so its length is 5 units. The shorter diagonal is the hypotenuse of a 45-45-90 right triangle with side 2, so its hypotenuse has length \(2 \sqrt{2}\).
C
\( \large 18 \text{ units} \)
Hint:
Use the Pythagorean Theorem to find the lengths of the diagonal segments.
D
\( \large 20 \text{ units}\)
Hint:
Use the Pythagorean Theorem to find the lengths of the diagonal segments.
Question 14 Explanation: 
Topic: Recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 15

Use the four figures below to answer the question that follows:

How many of the figures pictured above have at least one line of reflective symmetry?

A
\( \large 1\)
B
\( \large 2\)
Hint:
The ellipse has 2 lines of reflective symmetry (horizontal and vertical, through the center) and the triangle has 3. The other two figures have rotational symmetry, but not reflective symmetry.
C
\( \large 3\)
D
\( \large 4\)
Hint:
All four have rotational symmetry, but not reflective symmetry.
Question 15 Explanation: 
Topic: Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry, similarity, and congruence; and use these concepts to solve problems (Objective 0024).
Question 16

Use the expression below to answer the question that follows:

                 \( \large \dfrac{\left( 7,154 \right)\times \left( 896 \right)}{216}\)

Which of the following is the best estimate of the expression above?

A

2,000

Hint:
The answer is bigger than 7,000.
B

20,000

Hint:
Estimate 896/216 first.
C

3,000

Hint:
The answer is bigger than 7,000.
D

30,000

Hint:
\( \dfrac{896}{216} \approx 4\) and \(7154 \times 4\) is over 28,000, so this answer is closest.
Question 16 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016, overlaps with other objectives).
Question 17

Exactly one of the numbers below is a prime number.  Which one is it?

A
\( \large511 \)
Hint:
Divisible by 7.
B
\( \large517\)
Hint:
Divisible by 11.
C
\( \large519\)
Hint:
Divisible by 3.
D
\( \large521\)
Question 17 Explanation: 
Topics: Identify prime and composite numbers and demonstrate knowledge of divisibility rules (Objective 0018).
Question 18

What is the probability that two randomly selected people were born on the same day of the week?  Assume that all days are equally probable.

A
\( \large \dfrac{1}{7}\)
Hint:
It doesn't matter what day the first person was born on. The probability that the second person will match is 1/7 (just designate one person the first and the other the second). Another way to look at it is that if you list the sample space of all possible pairs, e.g. (Wed, Sun), there are 49 such pairs, and 7 of them are repeats of the same day, and 7/49=1/7.
B
\( \large \dfrac{1}{14}\)
Hint:
What would be the sample space here? Ie, how would you list 14 things that you pick one from?
C
\( \large \dfrac{1}{42}\)
Hint:
If you wrote the seven days of the week on pieces of paper and put the papers in a jar, this would be the probability that the first person picked Sunday and the second picked Monday from the jar -- not the same situation.
D
\( \large \dfrac{1}{49}\)
Hint:
This is the probability that they are both born on a particular day, e.g. Sunday.
Question 18 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 19

Use the graph below to answer the question that follows:

The graph above represents the equation \( \large 3x+Ay=B\), where A and B are integers.  What are the values of A and B?

A
\( \large A = -2, B= 6\)
Hint:
Plug in (2,0) to get B=6, then plug in (0,-3) to get A=-2.
B
\( \large A = 2, B = 6\)
Hint:
Try plugging (0,-3) into this equation.
C
\( \large A = -1.5, B=-3\)
Hint:
The problem said that A and B were integers and -1.5 is not an integer. Don't try to use slope-intercept form.
D
\( \large A = 2, B = -3\)
Hint:
Try plugging (2,0) into this equation.
Question 19 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 20

A family has four children.  What is the probability that two children are girls and two are boys?  Assume the the probability of having a boy (or a girl) is 50%.

A
\( \large \dfrac{1}{2}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
B
\( \large \dfrac{1}{4}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
C
\( \large \dfrac{1}{5}\)
Hint:
Some configurations are more probable than others -- i.e. it's more likely to have two boys and two girls than all boys. Be sure you are weighting properly.
D
\( \large \dfrac{3}{8}\)
Hint:
There are two possibilities for each child, so there are \(2 \times 2 \times 2 \times 2 =16\) different configurations, e.g. from oldest to youngest BBBG, BGGB, GBBB, etc. Of these configurations, there are 6 with two boys and two girls (this is the combination \(_{4}C_{2}\) or "4 choose 2"): BBGG, BGBG, BGGB, GGBB, GBGB, and GBBG. Thus the probability is 6/16=3/8.
Question 20 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.