Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

What is the greatest common factor of 540 and 216?

A
\( \large{{2}^{2}}\cdot {{3}^{3}}\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then take the smaller power for each prime that is a factor of both numbers.
B
\( \large2\cdot 3\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
C
\( \large{{2}^{3}}\cdot {{3}^{3}}\)
Hint:
\(2^3 = 8\) is not a factor of 540.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
Question 1 Explanation: 
Topic: Find the greatest common factor of a set of numbers (Objective 0018).
Question 2

Use the graph below to answer the question that follows:

 

The graph above best matches which of the following scenarios:

A

George left home at 10:00 and drove to work on a crooked path. He was stopped in traffic at 10:30 and 10:45. He drove 30 miles total.

Hint:
Just because he ended up 30 miles from home doesn't mean he drove 30 miles total.
B

George drove to work. On the way to work there is a little hill and a big hill. He slowed down for them. He made it to work at 11:15.

Hint:
The graph is not a picture of the roads.
C

George left home at 10:15. He drove 10 miles, then realized he‘d forgotten something at home. He turned back and got what he‘d forgotten. Then he drove in a straight line, at many different speeds, until he got to work around 11:15.

Hint:
A straight line on a distance versus time graph means constant speed.
D

George left home at 10:15. He drove 10 miles, then realized he‘d forgotten something at home. He turned back and got what he‘d forgotten. Then he drove at a constant speed until he got to work around 11:15.

Question 2 Explanation: 
Topic: Use qualitative graphs to represent functional relationships in the real world (Objective 0021).
Question 3

A sales companies pays its representatives $2 for each item sold, plus 40% of the price of the item.   The rest of the money that the representatives collect goes to the company.  All transactions are in cash, and all items cost $4 or more.   If the price of an item in dollars is p, which expression represents the amount of money the company collects when the item is sold?

A
\( \large \dfrac{3}{5}p-2\)
Hint:
The company gets 3/5=60% of the price, minus the $2 per item.
B
\( \large \dfrac{3}{5}\left( p-2 \right)\)
Hint:
This is sensible, but not what the problem states.
C
\( \large \dfrac{2}{5}p+2\)
Hint:
The company pays the extra $2; it doesn't collect it.
D
\( \large \dfrac{2}{5}p-2\)
Hint:
This has the company getting 2/5 = 40% of the price of each item, but that's what the representative gets.
Question 3 Explanation: 
Topic: Use algebra to solve word problems involving fractions, ratios, proportions, and percents (Objective 0020).
Question 4

What is the least common multiple of 540 and 216?

A
\( \large{{2}^{5}}\cdot {{3}^{6}}\cdot 5\)
Hint:
This is the product of the numbers, not the LCM.
B
\( \large{{2}^{3}}\cdot {{3}^{3}}\cdot 5\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then for each prime that's a factor of either number, use the largest exponent that appears in one of the factorizations. You can also take the product of the two numbers divided by their GCD.
C
\( \large{{2}^{2}}\cdot {{3}^{3}}\cdot 5\)
Hint:
216 is a multiple of 8.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\cdot {{5}^{2}}\)
Hint:
Not a multiple of 216 and not a multiple of 540.
Question 4 Explanation: 
Topic: Find the least common multiple of a set of numbers (Objective 0018).
Question 5

Solve for x: \(\large 4-\dfrac{2}{3}x=2x\)

A
\( \large x=3\)
Hint:
Try plugging x=3 into the equation.
B
\( \large x=-3\)
Hint:
Left side is positive, right side is negative when you plug this in for x.
C
\( \large x=\dfrac{3}{2}\)
Hint:
One way to solve: \(4=\dfrac{2}{3}x+2x\) \(=\dfrac{8}{3}x\).\(x=\dfrac{3 \times 4}{8}=\dfrac{3}{2}\). Another way is to just plug x=3/2 into the equation and see that each side equals 3 -- on a multiple choice test, you almost never have to actually solve for x.
D
\( \large x=-\dfrac{3}{2}\)
Hint:
Left side is positive, right side is negative when you plug this in for x.
Question 5 Explanation: 
Topic: Solve linear equations (Objective 0020).
Question 6

Which of the lists below is in order from least to greatest value?

A
\( \large \dfrac{1}{2},\quad \dfrac{1}{3},\quad \dfrac{1}{4},\quad \dfrac{1}{5}\)
Hint:
This is ordered from greatest to least.
B
\( \large \dfrac{1}{3},\quad \dfrac{2}{7},\quad \dfrac{3}{8},\quad \dfrac{4}{11}\)
Hint:
1/3 = 2/6 is bigger than 2/7.
C
\( \large \dfrac{1}{4},\quad \dfrac{2}{5},\quad \dfrac{2}{3},\quad \dfrac{4}{5}\)
Hint:
One way to look at this: 1/4 and 2/5 are both less than 1/2, and 2/3 and 4/5 are both greater than 1/2. 1/4 is 25% and 2/5 is 40%, so 2/5 is greater. The distance from 2/3 to 1 is 1/3 and from 4/5 to 1 is 1/5, and 1/5 is less than 1/3, so 4/5 is bigger.
D
\( \large \dfrac{7}{8},\quad \dfrac{6}{7},\quad \dfrac{5}{6},\quad \dfrac{4}{5}\)
Hint:
This is in order from greatest to least.
Question 6 Explanation: 
Topic: Ordering Fractions (Objective 0017)
Question 7

The table below gives the result of a survey at a college, asking students whether they were residents or commuters:

Based on the above data, what is the probability that a randomly chosen commuter student is a junior or a senior?

 
A
\( \large \dfrac{34}{43}\)
B
\( \large \dfrac{34}{71}\)
Hint:
This is the probability that a randomly chosen junior or senior is a commuter student.
C
\( \large \dfrac{34}{147}\)
Hint:
This is the probability that a randomly chosen student is a junior or senior who is a commuter.
D
\( \large \dfrac{71}{147}\)
Hint:
This is the probability that a randomly chosen student is a junior or a senior.
Question 7 Explanation: 
Topic: Recognize and apply the concept of conditional probability (Objective 0026).
Question 8

Which of the numbers below is the decimal equivalent of \( \dfrac{3}{8}?\)

A

0.38

Hint:
If you are just writing the numerator next to the denominator then your technique is way off, but by coincidence your answer is close; try with 2/3 and 0.23 is nowhere near correct.
B

0.125

Hint:
This is 1/8, not 3/8.
C

0.375

D

0.83

Hint:
3/8 is less than a half, and 0.83 is more than a half, so they can't be equal.
Question 8 Explanation: 
Topic: Converting between fractions and decimals (Objective 0017)
Question 9

At a school fundraising event, people can buy a ticket to spin a spinner like the one below.  The region that the spinner lands in tells which, if any, prize the person wins.

If 240 people buy tickets to spin the spinner, what is the best estimate of the number of keychains that will be given away?

A

40

Hint:
"Keychain" appears on the spinner twice.
B

80

Hint:
The probability of getting a keychain is 1/3, and so about 1/3 of the time the spinner will win.
C

100

Hint:
What is the probability of winning a keychain?
D

120

Hint:
That would be the answer for getting any prize, not a keychain specifically.
Question 9 Explanation: 
Topic: I would call this topic expected value, which is not listed on the objectives. This question is very similar to one on the sample test. It's not a good question in that it's oversimplified (a more difficult and interesting question would be something like, "The school bought 100 keychains for prizes, what is the probability that they will run out before 240 people play?"). In any case, I believe the objective this is meant for is, "Recognize the difference between experimentally and theoretically determined probabilities in real-world situations. (Objective 0026)." This is not something easily assessed with multiple choice .
Question 10

A family went on a long car trip.  Below is a graph of how far they had driven at each hour.

Which of the following is closest to their average speed driving on the trip?

 
A
\( \large d=20t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
B
\( \large d=30t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
C
\( \large d=40t\)
D
\( \large d=50t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
Question 10 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Question 11

The "houses" below are made of toothpicks and gum drops.

How many toothpicks are there in a row of 53 houses?

A

212

Hint:
Can the number of toothpicks be even?
B

213

Hint:
One way to see this is that every new "house" adds 4 toothpicks to the leftmost vertical toothpick -- so the total number is 1 plus 4 times the number of "houses." There are many other ways to look at the problem too.
C

217

Hint:
Try your strategy with a smaller number of "houses" so you can count and find your mistake.
D

265

Hint:
Remember that the "houses" overlap some walls.
Question 11 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic). (Objective 0021).
Question 12

Which of the following points is closest to \( \dfrac{34}{135} \times \dfrac{53}{86}\)?

A

A

Hint:
\(\frac{34}{135} \approx \frac{1}{4}\) and \( \frac{53}{86} \approx \frac {2}{3}\). \(\frac {1}{4}\) of \(\frac {2}{3}\) is small and closest to A.
B

B

Hint:
Estimate with simpler fractions.
C

C

Hint:
Estimate with simpler fractions.
D

D

Hint:
Estimate with simpler fractions.
Question 12 Explanation: 
Topic: Understand meaning and models of operations on fractions (Objective 0019).
Question 13

Use the table below to answer the question that follows:

Gordon wants to buy three pounds of nuts.  Each of the stores above ordinarily sells the nuts for $4.99 a pound, but is offering a discount this week.  At which store can he buy the nuts for the least amount of money?

A

Store A

Hint:
This would save about $2.50. You can quickly see that D saves more.
B

Store B

Hint:
This saves 15% and C saves 25%.
C

Store C

D

Store D

Hint:
This is about 20% off, which is less of a discount than C.
Question 13 Explanation: 
Topic: Understand the meanings and models of integers, fractions, decimals,percents, and mixed numbers and apply them to the solution of word problems (Objective 0017).
Question 14

Kendra is trying to decide which fraction is greater, \(  \dfrac{4}{7}\) or \(  \dfrac{5}{8}\). Which of the following answers shows the best reasoning?

A

\( \dfrac{4}{7}\) is \( \dfrac{3}{7}\)away from 1, and \( \dfrac{5}{8}\) is \( \dfrac{3}{8}\)away from 1. Since eighth‘s are smaller than seventh‘s, \( \dfrac{5}{8}\) is closer to 1, and is the greater of the two fractions.

B

\( 7-4=3\) and \( 8-5=3\), so the fractions are equal.

Hint:
Not how to compare fractions. By this logic, 1/2 and 3/4 are equal, but 1/2 and 2/4 are not.
C

\( 4\times 8=32\) and \( 7\times 5=35\). Since \( 32<35\) , \( \dfrac{5}{8}<\dfrac{4}{7}\)

Hint:
Starts out as something that works, but the conclusion is wrong. 4/7 = 32/56 and 5/8 = 35/56. The cross multiplication gives the numerators, and 35/56 is bigger.
D

\( 4<5\) and \( 7<8\), so \( \dfrac{4}{7}<\dfrac{5}{8}\)

Hint:
Conclusion is correct, logic is wrong. With this reasoning, 1/2 would be less than 2/100,000.
Question 14 Explanation: 
Topics: Comparing fractions, and understanding the meaning of fractions (Objective 0017).
Question 15

Which property is not shared by all rhombi?

A

4 congruent sides

Hint:
The most common definition of a rhombus is a quadrilateral with 4 congruent sides.
B

A center of rotational symmetry

Hint:
The diagonal of a rhombus separates it into two congruent isosceles triangles. The center of this line is a center of 180 degree rotational symmetry that switches the triangles.
C

4 congruent angles

Hint:
Unless the rhombus is a square, it does not have 4 congruent angles.
D

2 sets of parallel sides

Hint:
All rhombi are parallelograms.
Question 15 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles, and symmetry (Objective 0024).
Question 16

Elena is going to use a calculator to check whether or not 267 is prime. She will pick certain divisors, and then find 267 divided by each, and see if she gets a whole number. If she never gets a whole number, then she's found a prime. Which numbers does Elena NEED to check before she can stop checking and be sure she has a prime?

A

All natural numbers from 2 to 266.

Hint:
She only needs to check primes -- checking the prime factors of any composite is enough to look for divisors. As a test taking strategy, the other three choices involve primes, so worth thinking about.
B

All primes from 2 to 266 .

Hint:
Remember, factors come in pairs (except for square root factors), so she would first find the smaller of the pair and wouldn't need to check the larger.
C

All primes from 2 to 133 .

Hint:
She doesn't need to check this high. Factors come in pairs, and something over 100 is going to be paired with something less than 3, so she will find that earlier.
D

All primes from \( \large 2\) to \( \large \sqrt{267}\).

Hint:
\(\sqrt{267} \times \sqrt{267}=267\). Any other pair of factors will have one factor less than \( \sqrt{267}\) and one greater, so she only needs to check up to \( \sqrt{267}\).
Question 16 Explanation: 
Topic: Identify prime and composite numbers (Objective 0018).
Question 17

The letters A, and B represent digits (possibly equal) in the ten digit number x=1,438,152,A3B.   For which values of A and B is x divisible by 12, but not by 9?

A
\( \large A = 0, B = 4\)
Hint:
Digits add to 31, so not divisible by 3, so not divisible by 12.
B
\( \large A = 7, B = 2\)
Hint:
Digits add to 36, so divisible by 9.
C
\( \large A = 0, B = 6\)
Hint:
Digits add to 33, divisible by 3, not 9. Last digits are 36, so divisible by 4, and hence by 12.
D
\( \large A = 4, B = 8\)
Hint:
Digits add to 39, divisible by 3, not 9. Last digits are 38, so not divisible by 4, so not divisible by 12.
Question 17 Explanation: 
Topic: Demonstrate knowledge of divisibility rules (Objective 0018).
Question 18

A family has four children.  What is the probability that two children are girls and two are boys?  Assume the the probability of having a boy (or a girl) is 50%.

A
\( \large \dfrac{1}{2}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
B
\( \large \dfrac{1}{4}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
C
\( \large \dfrac{1}{5}\)
Hint:
Some configurations are more probable than others -- i.e. it's more likely to have two boys and two girls than all boys. Be sure you are weighting properly.
D
\( \large \dfrac{3}{8}\)
Hint:
There are two possibilities for each child, so there are \(2 \times 2 \times 2 \times 2 =16\) different configurations, e.g. from oldest to youngest BBBG, BGGB, GBBB, etc. Of these configurations, there are 6 with two boys and two girls (this is the combination \(_{4}C_{2}\) or "4 choose 2"): BBGG, BGBG, BGGB, GGBB, GBGB, and GBBG. Thus the probability is 6/16=3/8.
Question 18 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Question 19

Four children randomly line up, single file.  What is the probability that they are in height order, with the shortest child in front?   All of the children are different heights.

A
\( \large \dfrac{1}{4}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
B
\( \large \dfrac{1}{256} \)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
C
\( \large \dfrac{1}{16}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
D
\( \large \dfrac{1}{24}\)
Hint:
The number of ways for the children to line up is \(4!=4 \times 3 \times 2 \times 1 =24\) -- there are 4 choices for who is first in line, then 3 for who is second, etc. Only one of these lines has the children in the order specified.
Question 19 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Question 20

A publisher prints a series of books with covers made of identical material and using the same thickness of paper for each page.  The covers of the book together are 0.4 cm thick, and 125 pieces of the paper used together are 1 cm thick.

The publisher uses a linear function to determine the total thickness, T(n) of a book made with n sheets of paper.   What are the slope and intercept of T(n)?

A

Intercept = 0.4 cm, Slope = 125 cm/page

Hint:
This would mean that each page of the book was 125 cm thick.
B

Intercept =0.4 cm, Slope = \(\dfrac{1}{125}\)cm/page

Hint:
The intercept is how thick the book would be with no pages in it. The slope is how much 1 extra page adds to the thickness of the book.
C

Intercept = 125 cm, Slope = 0.4 cm

Hint:
This would mean that with no pages in the book, it would be 125 cm thick.
D

Intercept = \(\dfrac{1}{125}\)cm, Slope = 0.4 pages/cm

Hint:
This would mean that each new page of the book made it 0.4 cm thicker.
Question 20 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.