Hints will display for most wrong answers; explanations for most right answers. You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test. Some of the sample questions were more convoluted than I could bear to write. See terms of use. See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

## MTEL General Curriculum Mathematics Practice

Question 1 |

#### Cell phone plan A charges $3 per month plus $0.10 per minute. Cell phone plan B charges $29.99 per month, with no fee for the first 400 minutes and then $0.20 for each additional minute.

#### Which equation can be used to solve for the number of minutes, m (with m>400) that a person would have to spend on the phone each month in order for the bills for plan A and plan B to be equal?

\( \large 3.10m=400+0.2m\) Hint: These are the numbers in the problem, but this equation doesn't make sense. If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should. | |

\( \large 3+0.1m=29.99+.20m\) Hint: Doesn't account for the 400 free minutes. | |

\( \large 3+0.1m=400+29.99+.20(m-400)\) Hint: Why would you add 400 minutes and $29.99? If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should. | |

\( \large 3+0.1m=29.99+.20(m-400)\) Hint: The left side is $3 plus $0.10 times the number of minutes. The right is $29.99 plus $0.20 times the number of minutes over 400. |

Question 2 |

#### Which of the following is the equation of a linear function?

\( \large y={{x}^{2}}+2x+7\) Hint: This is a quadratic function. | |

\( \large y={{2}^{x}}\) Hint: This is an exponential function. | |

\( \large y=\dfrac{15}{x}\) Hint: This is an inverse function. | |

\( \large y=x+(x+4)\) Hint: This is a linear function, y=2x+4, it's graph is a straight line with slope 2 and y-intercept 4. |

Question 3 |

#### The table below gives data from various years on how many young girls drank milk.

#### Based on the data given above, what was the probability that a randomly chosen girl in 1990 drank milk?

\( \large \dfrac{502}{1222}\) Hint: This is the probability that a randomly chosen girl who drinks milk was in the 1989-1991 food survey. | |

\( \large \dfrac{502}{2149}\) Hint: This is the probability that a randomly chosen girl from the whole survey drank milk and was also surveyed in 1989-1991. | |

\( \large \dfrac{502}{837}\) | |

\( \large \dfrac{1222}{2149}\) Hint: This is the probability that a randomly chosen girl from any year of the survey drank milk. |

Question 4 |

#### Which of the following sets of polygons can be assembled to form a pentagonal pyramid?

## 2 pentagons and 5 rectangles.Hint: These can be assembled to form a pentagonal prism, not a pentagonal pyramid. | |

## 1 square and 5 equilateral triangles.Hint: You need a pentagon for a pentagonal pyramid. | |

## 1 pentagon and 5 isosceles triangles. | |

## 1 pentagon and 10 isosceles triangles. |

Question 5 |

#### A cylindrical soup can has diameter 7 cm and height 11 cm. The can holds g grams of soup. How many grams of the same soup could a cylindrical can with diameter 14 cm and height 33 cm hold?

\( \large 6g\) Hint: You must scale in all three dimensions. | |

\( \large 12g\) Hint: Height is multiplied by 3, and diameter and radius are multiplied by 2. Since the radius is squared, final result is multiplied by \(2^2\times 3=12\). | |

\( \large 18g\) Hint: Don't square the height scale factor. | |

\( \large 36g\) Hint: Don't square the height scale factor. |

Question 6 |

#### The Venn Diagram below gives data on the number of seniors, athletes, and vegetarians in the student body at a college:

#### How many students at the college are seniors who are not vegetarians?

\( \large 137\) Hint: Doesn't include the senior athletes who are not vegetarians. | |

\( \large 167\) | |

\( \large 197\) Hint: That's all seniors, including vegetarians. | |

\( \large 279\) Hint: Includes all athletes who are not vegetarians, some of whom are not seniors. |

Question 7 |

#### Use the graph below to answer the question that follows.

#### If the polygon shown above is reflected about the y axis and then rotated 90 degrees clockwise about the origin, which of the following graphs is the result?

Hint: Try following the point (1,4) to see where it goes after each transformation. | |

Hint: Make sure you're reflecting in the correct axis. | |

Hint: Make sure you're rotating the correct direction. |

Question 8 |

#### What is the length of side \(\overline{BD}\) in the triangle below, where \(\angle DBA\) is a right angle?

\( \large 1\) Hint: Use the Pythagorean Theorem. | |

\( \large \sqrt{5}\) Hint: \(2^2+e^2=3^2\) or \(4+e^2=9;e^2=5; e=\sqrt{5}\). | |

\( \large \sqrt{13}\) Hint: e is not the hypotenuse. | |

\( \large 5\) Hint: Use the Pythagorean Theorem. |

Question 9 |

#### Taxicab fares in Boston (Spring 2012) are $2.60 for the first \(\dfrac{1}{7}\) of a mile or less and $0.40 for each \(\dfrac{1}{7}\) of a mile after that.

#### Let d represent the distance a passenger travels in miles (with \(d>\dfrac{1}{7}\)). Which of the following expressions represents the total fare?

\( \large \$2.60+\$0.40d\) Hint: It's 40 cents for 1/7 of a mile, not per mile. | |

\( \large \$2.60+\$0.40\dfrac{d}{7}\) Hint: According to this equation, going 7 miles would cost $3; does that make sense? | |

\( \large \$2.20+\$2.80d\) Hint: You can think of the fare as $2.20 to enter the cab, and then $0.40 for each 1/7 of a mile, including the first 1/7 of a mile (or $2.80 per mile).
Alternatively, you pay $2.60 for the first 1/7 of a mile, and then $2.80 per mile for d-1/7 miles. The total is 2.60+2.80(d-1/7) = 2.60+ 2.80d -.40 = 2.20+2.80d. | |

\( \large \$2.60+\$2.80d\) Hint: Don't count the first 1/7 of a mile twice. |

Question 10 |

#### Some children explored the diagonals in 2 x 2 squares on pages of a calendar (where all four squares have numbers in them). They conjectured that the sum of the diagonals is always equal; in the example below, 8+16=9+15.

#### Which of the equations below could best be used to explain why the children€™s conjecture is correct?

\( \large 8x+16x=9x+15x\) Hint: What would x represent in this case? Make sure you can describe in words what x represents. | |

\( \large x+(x+2)=(x+1)+(x+1)\) Hint: What would x represent in this case? Make sure you can describe in words what x represents. | |

\( \large x+(x+8)=(x+1)+(x+7)\) Hint: x is the number in the top left square, x+8 is one below and to the right, x+1 is to the right of x, and x+7 is below x. | |

\( \large x+8+16=x+9+15\) Hint: What would x represent in this case? Make sure you can describe in words what x represents. |

Question 11 |

#### Four children randomly line up, single file. What is the probability that they are in height order, with the shortest child in front? All of the children are different heights.

\( \large \dfrac{1}{4}\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{256}
\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{16}\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{24}\) Hint: The number of ways for the children to line up is \(4!=4 \times 3 \times 2 \times 1 =24\) -- there are 4 choices for who is first in line, then 3 for who is second, etc. Only one of these lines has the children in the order specified. |

Question 12 |

#### The equation \( \large F=\frac{9}{5}C+32\) is used to convert a temperature measured in Celsius to the equivalent Farentheit temperature.

#### A patient€™s temperature increased by 1.5° Celcius. By how many degrees Fahrenheit did her temperature increase?

## 1.5°Hint: Celsius and Fahrenheit don't increase at the same rate. | |

## 1.8°Hint: That's how much the Fahrenheit temp increases when the Celsius temp goes up by 1 degree. | |

## 2.7°Hint: Each degree increase in Celsius corresponds to a \(\dfrac{9}{5}=1.8\) degree increase in Fahrenheit. Thus the increase is 1.8+0.9=2.7. | |

## Not enough information.Hint: A linear equation has constant slope, which means that every increase of the same amount in one variable, gives a constant increase in the other variable. It doesn't matter what temperature the patient started out at. |

Question 13 |

#### Which of the lines depicted below is a graph of \( \large y=2x-5\)?

## aHint: The slope of line a is negative. | |

## bHint: Wrong slope and wrong intercept. | |

## cHint: The intercept of line c is positive. | |

## dHint: Slope is 2 -- for every increase of 1 in x, y increases by 2. Intercept is -5 -- the point (0,-5) is on the line. |

Question 14 |

#### The letters A, and B represent digits (possibly equal) in the ten digit number x=1,438,152,A3B. For which values of A and B is x divisible by 12, but not by 9?

\( \large A = 0, B = 4\) Hint: Digits add to 31, so not divisible by 3, so not divisible by 12. | |

\( \large A = 7, B = 2\) Hint: Digits add to 36, so divisible by 9. | |

\( \large A = 0, B = 6\) Hint: Digits add to 33, divisible by 3, not 9. Last digits are 36, so divisible by 4, and hence by 12. | |

\( \large A = 4, B = 8\) Hint: Digits add to 39, divisible by 3, not 9. Last digits are 38, so not divisible by 4, so not divisible by 12. |

Question 15 |

#### The window glass below has the shape of a semi-circle on top of a square, where the side of the square has length x. It was cut from one piece of glass.

#### What is the perimeter of the window glass?

\( \large 3x+\dfrac{\pi x}{2}\) Hint: By definition, \(\pi\) is the ratio of the circumference of a circle to its diameter; thus the circumference is \(\pi d\). Since we have a semi-circle, its perimeter is \( \dfrac{1}{2} \pi x\). Only 3 sides of the square contribute to the perimeter. | |

\( \large 3x+2\pi x\) Hint: Make sure you know how to find the circumference of a circle. | |

\( \large 3x+\pi x\) Hint: Remember it's a semi-circle, not a circle. | |

\( \large 4x+2\pi x\) Hint: Only 3 sides of the square contribute to the perimeter. |

Question 16 |

#### What is the greatest common factor of 540 and 216?

\( \large{{2}^{2}}\cdot {{3}^{3}}\) Hint: One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then take the smaller power for each prime that is a factor of both numbers. | |

\( \large2\cdot 3\) Hint: This is a common factor of both numbers, but it's not the greatest common factor. | |

\( \large{{2}^{3}}\cdot {{3}^{3}}\) Hint: \(2^3 = 8\) is not a factor of 540. | |

\( \large{{2}^{2}}\cdot {{3}^{2}}\) Hint: This is a common factor of both numbers, but it's not the greatest common factor. |

Question 17 |

#### Use the expression below to answer the question that follows:

#### \( \large \dfrac{\left( 7,154 \right)\times \left( 896 \right)}{216}\)

#### Which of the following is the best estimate of the expression above?

## 2,000Hint: The answer is bigger than 7,000. | |

## 20,000Hint: Estimate 896/216 first. | |

## 3,000Hint: The answer is bigger than 7,000. | |

## 30,000Hint: \( \dfrac{896}{216} \approx 4\) and \(7154 \times 4\) is over 28,000, so this answer is closest. |

Question 18 |

#### A family went on a long car trip. Below is a graph of how far they had driven at each hour.

#### Which of the following is closest to their average speed driving on the trip?

\( \large d=20t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. | |

\( \large d=30t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. | |

\( \large d=40t\) | |

\( \large d=50t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. |

Question 19 |

#### Use the samples of a student€™s work below to answer the question that follows:

\( \large \dfrac{2}{3}\times \dfrac{3}{4}=\dfrac{4\times 2}{3\times 3}=\dfrac{8}{9}\)\( \large \dfrac{2}{5}\times \dfrac{7}{7}=\dfrac{7\times 2}{5\times 7}=\dfrac{2}{5}\)

\( \large \dfrac{7}{6}\times \dfrac{3}{4}=\dfrac{4\times 7}{6\times 3}=\dfrac{28}{18}=\dfrac{14}{9}\)

#### Which of the following best describes the mathematical validity of the algorithm the student is using?

## It is not valid. It never produces the correct answer.Hint: In the middle example,the answer is correct. | |

## It is not valid. It produces the correct answer in a few special cases, but it‘s still not a valid algorithm.Hint: Note that this algorithm gives a/b divided by c/d, not a/b x c/d, but some students confuse multiplication and cross-multiplication. If a=0 or if c/d =1, division and multiplication give the same answer. | |

## It is valid if the rational numbers in the multiplication problem are in lowest terms.Hint: Lowest terms is irrelevant. | |

## It is valid for all rational numbers.Hint: Can't be correct as the first and last examples have the wrong answers. |

Question 20 |

#### In January 2011, the national debt was about 14 trillion dollars and the US population was about 300 million people. Someone reading these figures estimated that the national debt was about $5,000 per person. Which of these statements best describes the reasonableness of this estimate?

## It is too low by a factor of 10Hint: 14 trillion \( \approx 15 \times {{10}^{12}} \) and 300 million \( \approx 3 \times {{10}^{8}}\), so the true answer is about \( 5 \times {{10}^{4}} \) or $50,000. | |

## It is too low by a factor of 100 | |

## It is too high by a factor of 10 | |

## It is too high by a factor of 100 |

List |

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed). General comments can be left here.