## 20 Random Questions

Hints will display for most wrong answers; explanations for most right answers. You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test. Some of the sample questions were more convoluted than I could bear to write. See terms of use. See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

## MTEL General Curriculum Mathematics Practice

Question 1 |

#### The picture below shows identical circles drawn on a piece of paper. The rectangle represents an index card that is blocking your view of \( \dfrac{3}{5}\) of the circles on the paper. How many circles are covered by the rectangle?

## 4Hint: The card blocks more than half of the circles, so this number is too small. | |

## 5Hint: The card blocks more than half of the circles, so this number is too small. | |

## 8Hint: The card blocks more than half of the circles, so this number is too small. | |

## 12Hint: 2/5 of the circles or 8 circles are showing. Thus 4 circles represent 1/5 of the circles, and \(4 \times 5=20\) circles represent 5/5 or all the circles. Thus 12 circles are hidden. |

Question 2 |

#### Below are four inputs and outputs for a function machine representing the function A:

#### Which of the following equations could also represent A for the values shown?

\( \large A(n)=n+4\) Hint: For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= -1 would output 3, not 0 as the machine does. | |

\( \large A(n)=n+2\) Hint: For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 4, not 6 as the machine does. | |

\( \large A(n)=2n+2\) Hint: Simply plug in each of the four function machine input values, and see that the equation produces the correct output, e.g. A(2)=6, A(-1)=0, etc. | |

\( \large A(n)=2\left( n+2 \right)\) Hint: For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 8, not 6 as the machine does. |

Question 3 |

#### A publisher prints a series of books with covers made of identical material and using the same thickness of paper for each page. The covers of the book together are 0.4 cm thick, and 125 pieces of the paper used together are 1 cm thick.

#### The publisher uses a linear function to determine the total thickness, T(n) of a book made with n sheets of paper. What are the slope and intercept of T(n)?

## Intercept = 0.4 cm, Slope = 125 cm/pageHint: This would mean that each page of the book was 125 cm thick. | |

## Intercept =0.4 cm, Slope = \(\dfrac{1}{125}\)cm/pageHint: The intercept is how thick the book would be with no pages in it. The slope is how much 1 extra page adds to the thickness of the book. | |

## Intercept = 125 cm, Slope = 0.4 cmHint: This would mean that with no pages in the book, it would be 125 cm thick. | |

## Intercept = \(\dfrac{1}{125}\)cm, Slope = 0.4 pages/cmHint: This would mean that each new page of the book made it 0.4 cm thicker. |

Question 4 |

#### The polygon depicted below is drawn on dot paper, with the dots spaced 1 unit apart. What is the perimeter of the polygon?

\( \large 18+\sqrt{2} \text{ units}\) Hint: Be careful with the Pythagorean Theorem. | |

\( \large 18+2\sqrt{2}\text{ units}\) Hint: There are 13 horizontal or vertical 1 unit segments. The longer diagonal is the hypotenuse of a 3-4-5 right triangle, so its length is 5 units. The shorter diagonal is the hypotenuse of a 45-45-90 right triangle with side 2, so its hypotenuse has length \(2 \sqrt{2}\). | |

\( \large 18 \text{ units}
\) Hint: Use the Pythagorean Theorem to find the lengths of the diagonal segments. | |

\( \large 20 \text{ units}\) Hint: Use the Pythagorean Theorem to find the lengths of the diagonal segments. |

Question 5 |

#### A family went on a long car trip. Below is a graph of how far they had driven at each hour.

#### Which of the following is closest to their average speed driving on the trip?

\( \large d=20t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. | |

\( \large d=30t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. | |

\( \large d=40t\) | |

\( \large d=50t\) Hint: Try plugging t=7 into the equation, and see how it matches the graph. |

Question 6 |

## The student used a method that worked for this problem and can be generalized to any subtraction problem.Hint: Note that this algorithm is taught as the "standard" algorithm in much of Europe (it's where the term "borrowing" came from -- you borrow on top and "pay back" on the bottom). | |

## The student used a method that worked for this problem and that will work for any subtraction problem that only requires one regrouping; it will not work if more regrouping is required.Hint: Try some more examples. | |

## The student used a method that worked for this problem and will work for all three-digit subtraction problems, but will not work for larger problems.Hint: Try some more examples. | |

## The student used a method that does not work. The student made two mistakes that cancelled each other out and was lucky to get the right answer for this problem.Hint: Remember, there are many ways to do subtraction; there is no one "right" algorithm. |

Question 7 |

#### The least common multiple of 60 and N is 1260. Which of the following could be the prime factorization of N?

\( \large2\cdot 5\cdot 7\) Hint: 1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM. | |

\( \large{{2}^{3}}\cdot {{3}^{2}}\cdot 5 \cdot 7\) Hint: 1260 is not divisible by 8, so it isn't a multiple of this N. | |

\( \large3 \cdot 5 \cdot 7\) Hint: 1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM. | |

\( \large{{3}^{2}}\cdot 5\cdot 7\) Hint: \(1260=2^2 \cdot 3^2 \cdot 5 \cdot 7\) and \(60=2^2 \cdot 3 \cdot 5\). In order for 1260 to be the LCM, N has to be a multiple of \(3^2\) and of 7 (because 60 is not a multiple of either of these). N also cannot introduce a factor that would require the LCM to be larger (as in choice b). |

Question 8 |

#### Four children randomly line up, single file. What is the probability that they are in height order, with the shortest child in front? All of the children are different heights.

\( \large \dfrac{1}{4}\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{256}
\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{16}\) Hint: Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children. | |

\( \large \dfrac{1}{24}\) Hint: The number of ways for the children to line up is \(4!=4 \times 3 \times 2 \times 1 =24\) -- there are 4 choices for who is first in line, then 3 for who is second, etc. Only one of these lines has the children in the order specified. |

Question 9 |

#### What set of transformations will transform the leftmost image into the rightmost image?

## A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.Hint: Part of the figure would move below the x-axis with these transformations. | |

## A translation 3 units up, followed by a reflection about the line y=x.Hint: See what happens to the point (5,1) under this set of transformations. | |

## A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up. | |

## A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.Hint: See what happens to the point (3,3) under this set of transformations. |

Question 10 |

#### M is a multiple of 26. Which of the following cannot be true?

## M is odd.Hint: All multiples of 26 are also multiples of 2, so they must be even. | |

## M is a multiple of 3.Hint: 3 x 26 is a multiple of both 3 and 26. | |

## M is 26.Hint: 1 x 26 is a multiple of 26. | |

## M is 0.Hint: 0 x 26 is a multiple of 26. |

Question 11 |

#### Use the expression below to answer the question that follows.

#### \( \large 3\times {{10}^{4}}+2.2\times {{10}^{2}}\)

#### Which of the following is closest to the expression above?

## Five millionHint: Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values. | |

## Fifty thousandHint: Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values. | |

## Three millionHint: Don't add the exponents. | |

## Thirty thousandHint: \( 3\times {{10}^{4}} = 30,000;\) the other term is much smaller and doesn't change the estimate. |

Question 12 |

#### The chart below gives percentiles for the number of sit-ups that boys of various ages can do in 60 seconds (source , June 24, 2011)

#### Which of the following statements can be inferred from the above chart?

## 95% of 12 year old boys can do 56 sit-ups in 60 seconds.Hint: The 95th percentile means that 95% of scores are less than or equal to 56, and 5% are greater than or equal to 56. | |

## At most 25% of 7 year old boys can do 19 or more sit-ups in 60 seconds.Hint: The 25th percentile means that 25% of scores are less than or equal to 19, and 75% are greater than or equal to 19. | |

## Half of all 13 year old boys can do less than 41 sit-ups in 60 seconds and half can do more than 41 sit-ups in 60 seconds.Hint: Close, but not quite. There's no accounting for boys who can do exactly 41 sit ups. Look at these data: 10, 20, 41, 41, 41, 41, 50, 60, 90. The median is 41, but more than half can do 41 or more. | |

## At least 75% of 16 year old boys can only do 51 or fewer sit-ups in 60 seconds.Hint: The "at least" is necessary due to duplicates. Suppose the data were 10, 20, 51, 51. The 75th percentile is 51, but 100% of the boys can only do 51 or fewer situps. |

Question 13 |

#### The “houses” below are made of toothpicks and gum drops.

#### Which of the following does not represent the number of gumdrops in a row of h houses?

\( \large 2+3h\) Hint: Think of this as start with 2 gumdrops on the left wall, and then add 3 gumdrops for each house. | |

\( \large 5+3(h-1)\) Hint: Think of this as start with one house, and then add 3 gumdrops for each of the other h-1 houses. | |

\( \large h+(h+1)+(h+1)\) Hint: Look at the gumdrops in 3 rows: h gumdrops for the "rooftops," h+1 for the tops of the vertical walls, and h+1 for the floors. | |

\( \large 5+3h\) Hint: This one is not a correct equation (which makes it the correct answer!). Compare to choice A. One of them has to be wrong, as they differ by 3. |

Question 14 |

#### What is the least common multiple of 540 and 216?

\( \large{{2}^{5}}\cdot {{3}^{6}}\cdot 5\) Hint: This is the product of the numbers, not the LCM. | |

\( \large{{2}^{3}}\cdot {{3}^{3}}\cdot 5\) Hint: One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then for each prime that's a factor of either number, use the largest exponent that appears in one of the factorizations. You can also take the product of the two numbers divided by their GCD. | |

\( \large{{2}^{2}}\cdot {{3}^{3}}\cdot 5\) Hint: 216 is a multiple of 8. | |

\( \large{{2}^{2}}\cdot {{3}^{2}}\cdot {{5}^{2}}\) Hint: Not a multiple of 216 and not a multiple of 540. |

Question 15 |

#### The table below gives data from various years on how many young girls drank milk.

#### Based on the data given above, what was the probability that a randomly chosen girl in 1990 drank milk?

\( \large \dfrac{502}{1222}\) Hint: This is the probability that a randomly chosen girl who drinks milk was in the 1989-1991 food survey. | |

\( \large \dfrac{502}{2149}\) Hint: This is the probability that a randomly chosen girl from the whole survey drank milk and was also surveyed in 1989-1991. | |

\( \large \dfrac{502}{837}\) | |

\( \large \dfrac{1222}{2149}\) Hint: This is the probability that a randomly chosen girl from any year of the survey drank milk. |

Question 16 |

#### The picture below represents a board with pegs on it, where the closest distance between two pegs is 1 cm. What is the area of the pentagon shown?

Question 17 |

#### A solution requires 4 ml of saline for every 7 ml of medicine. How much saline would be required for 50 ml of medicine?

\( \large 28 \dfrac{4}{7}\) ml Hint: 49 ml of medicine requires 28 ml of saline. The extra ml of saline requires 4 ml saline/ 7 ml medicine = 4/7 ml saline per 1 ml medicine. | |

\( \large 28 \dfrac{1}{4}\) ml Hint: 49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require? | |

\( \large 28 \dfrac{1}{7}\) ml Hint: 49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require? | |

\( \large 87.5\) ml Hint: 49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require? |

Question 18 |

#### Below are several expressions

I. \(\large \dfrac{1}{2}+\dfrac{1}{3}\) | II. \( \large .400000\) | III. \(\large\dfrac{1}{5}+\dfrac{1}{5}\) |

IV. \( \large 40\% \) | V. \( \large 0.25 \) | VI. \(\large\dfrac{14}{35}\) |

#### Which of the lists below includes all of the above expressions that are equivalent to \( \dfrac{2}{5}\)?

## I, III, V, VIHint: I and V are not at all how fractions and decimals work. | |

## III, VIHint: These are right, but there are more. | |

## II, III, VIHint: These are right, but there are more. | |

## II, III, IV, VI |

Question 19 |

#### Use the graph below to answer the question that follows.

#### Which of the following is a correct equation for the graph of the line depicted above?

\( \large y=-\dfrac{1}{2}x+2\) Hint: The slope is -1/2 and the y-intercept is 2. You can also try just plugging in points. For example, this is the only choice that gives y=1 when x=2. | |

\( \large 4x=2y\) Hint: This line goes through (0,0); the graph above does not. | |

\( \large y=x+2\) Hint: The line pictured has negative slope. | |

\( \large y=-x+2\) Hint: Try plugging x=4 into this equation and see if that point is on the graph above. |

Question 20 |

#### Below are front, side, and top views of a three-dimensional solid.

#### Which of the following could be the solid shown above?

## A sphereHint: All views would be circles. | |

## A cylinder | |

## A coneHint: Two views would be triangles, not rectangles. | |

## A pyramidHint: How would one view be a circle? |

List |

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed). General comments can be left here.