Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.  To see ten new questions, reload the page.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice

Question 1

What is the greatest common factor of 540 and 216?

A
\( \large{{2}^{2}}\cdot {{3}^{3}}\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then take the smaller power for each prime that is a factor of both numbers.
B
\( \large2\cdot 3\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
C
\( \large{{2}^{3}}\cdot {{3}^{3}}\)
Hint:
\(2^3 = 8\) is not a factor of 540.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
Question 1 Explanation: 
Topic: Find the greatest common factor of a set of numbers (Objective 0018).
Question 2

The picture below represents a board with pegs on it, where the closest distance between two pegs is 1 cm.  What is the area of the pentagon shown?

A
\( \large 8\text{ c}{{\text{m}}^{2}} \)
Hint:
Don't just count the dots inside, that doesn't give the area. Try adding segments so that the slanted lines become the diagonals of rectangles.
B
\( \large 11\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
C
\( \large 11.5\text{ c}{{\text{m}}^{2}}\)
Hint:
An easy way to do this problem is to use Pick's Theorem (of course, it's better if you understand why Pick's theorem works): area = # pegs inside + half # pegs on the border - 1. In this case 8+9/2-1=11.5. A more appropriate strategy for elementary classrooms is to add segments; here's one way.

There are 20 1x1 squares enclosed, and the total area of the triangles that need to be subtracted is 8.5
D
\( \large 12.5\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
Question 2 Explanation: 
Topics: Calculate measurements and derive and use formulas for calculating the areas of geometric shapes and figures (Objective 0023).
Question 3

The expression \( \large{{8}^{3}}\cdot {{2}^{-10}}\) is equal to which of the following?

A
\( \large 2\)
Hint:
Write \(8^3\) as a power of 2.
B
\( \large \dfrac{1}{2}\)
Hint:
\(8^3 \cdot {2}^{-10}={(2^3)}^3 \cdot {2}^{-10}\) =\(2^9 \cdot {2}^{-10} =2^{-1}\)
C
\( \large 16\)
Hint:
Write \(8^3\) as a power of 2.
D
\( \large \dfrac{1}{16}\)
Hint:
Write \(8^3\) as a power of 2.
Question 3 Explanation: 
Topic: Laws of Exponents (Objective 0019).
Question 4

Each individual cube that makes up the rectangular solid depicted below has 6 inch sides.  What is the surface area of the solid in square feet?

 
A
\( \large 11\text{ f}{{\text{t}}^{2}}\)
Hint:
Check your units and make sure you're using feet and inches consistently.
B
\( \large 16.5\text{ f}{{\text{t}}^{2}}\)
Hint:
Each square has surface area \(\dfrac{1}{2} \times \dfrac {1}{2}=\dfrac {1}{4}\) sq feet. There are 9 squares on the top and bottom, and 12 on each of 4 sides, for a total of 66 squares. 66 squares \(\times \dfrac {1}{4}\) sq feet/square =16.5 sq feet.
C
\( \large 66\text{ f}{{\text{t}}^{2}}\)
Hint:
The area of each square is not 1.
D
\( \large 2376\text{ f}{{\text{t}}^{2}}\)
Hint:
Read the question more carefully -- the answer is supposed to be in sq feet, not sq inches.
Question 4 Explanation: 
Topics: Use unit conversions to solve measurement problems, and derive and use formulas for calculating surface areas of geometric shapes and figures (Objective 0023).
Question 5

A teacher has a list of all the countries in the world and their populations in March 2012.  She is going to have her students use technology to compute the mean and median of the numbers on the list.   Which of the following statements is true?

A

The teacher can be sure that the mean and median will be the same without doing any computation.

Hint:
Does this make sense? How likely is it that the mean and median of any large data set will be the same?
B

The teacher can be sure that the mean is bigger than the median without doing any computation.

Hint:
This is a skewed distribution, and very large countries like China and India contribute huge numbers to the mean, but are counted the same as small countries like Luxembourg in the median (the same thing happens w/data on salaries, where a few very high income people tilt the mean -- that's why such data is usually reported as medians).
C

The teacher can be sure that the median is bigger than the mean without doing any computation.

Hint:
Think about a set of numbers like 1, 2, 3, 4, 10,000 -- how do the mean/median compare? How might that relate to countries of the world?
D

There is no way for the teacher to know the relative size of the mean and median without computing them.

Hint:
Knowing the shape of the distribution of populations does give us enough info to know the relative size of the mean and median, even without computing them.
Question 5 Explanation: 
Topic: Use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 6

Use the graph below to answer the question that follows:

The graph above represents the equation \( \large 3x+Ay=B\), where A and B are integers.  What are the values of A and B?

A
\( \large A = -2, B= 6\)
Hint:
Plug in (2,0) to get B=6, then plug in (0,-3) to get A=-2.
B
\( \large A = 2, B = 6\)
Hint:
Try plugging (0,-3) into this equation.
C
\( \large A = -1.5, B=-3\)
Hint:
The problem said that A and B were integers and -1.5 is not an integer. Don't try to use slope-intercept form.
D
\( \large A = 2, B = -3\)
Hint:
Try plugging (2,0) into this equation.
Question 6 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 7

What is the length of side \(\overline{BD}\) in the triangle below, where \(\angle DBA\) is a right angle?

A
\( \large 1\)
Hint:
Use the Pythagorean Theorem.
B
\( \large \sqrt{5}\)
Hint:
\(2^2+e^2=3^2\) or \(4+e^2=9;e^2=5; e=\sqrt{5}\).
C
\( \large \sqrt{13}\)
Hint:
e is not the hypotenuse.
D
\( \large 5\)
Hint:
Use the Pythagorean Theorem.
Question 7 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023), and recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 8

A cylindrical soup can has diameter 7 cm and height 11 cm. The can holds g grams of soup.   How many grams of the same soup could a cylindrical can with diameter 14 cm and height 33 cm hold?

A
\( \large 6g\)
Hint:
You must scale in all three dimensions.
B
\( \large 12g\)
Hint:
Height is multiplied by 3, and diameter and radius are multiplied by 2. Since the radius is squared, final result is multiplied by \(2^2\times 3=12\).
C
\( \large 18g\)
Hint:
Don't square the height scale factor.
D
\( \large 36g\)
Hint:
Don't square the height scale factor.
Question 8 Explanation: 
Topic: Determine how the characteristics (e.g., area, volume) of geometric figures and shapes are affected by changes in their dimensions (Objective 0023).
Question 9

The equation \( \large F=\frac{9}{5}C+32\) is used to convert a temperature measured in Celsius to the equivalent Farentheit temperature.

A patient's temperature increased by 1.5° Celcius.  By how many degrees Fahrenheit did her temperature increase?

A

1.5°

Hint:
Celsius and Fahrenheit don't increase at the same rate.
B

1.8°

Hint:
That's how much the Fahrenheit temp increases when the Celsius temp goes up by 1 degree.
C

2.7°

Hint:
Each degree increase in Celsius corresponds to a \(\dfrac{9}{5}=1.8\) degree increase in Fahrenheit. Thus the increase is 1.8+0.9=2.7.
D

Not enough information.

Hint:
A linear equation has constant slope, which means that every increase of the same amount in one variable, gives a constant increase in the other variable. It doesn't matter what temperature the patient started out at.
Question 9 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 10

A family went on a long car trip.  Below is a graph of how far they had driven at each hour.

Which of the following is closest to their average speed driving on the trip?

 
A
\( \large d=20t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
B
\( \large d=30t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
C
\( \large d=40t\)
D
\( \large d=50t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
Question 10 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
There are 10 questions to complete.

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.