Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

The expression \( \large{{8}^{3}}\cdot {{2}^{-10}}\) is equal to which of the following?

A
\( \large 2\)
Hint:
Write \(8^3\) as a power of 2.
B
\( \large \dfrac{1}{2}\)
Hint:
\(8^3 \cdot {2}^{-10}={(2^3)}^3 \cdot {2}^{-10}\) =\(2^9 \cdot {2}^{-10} =2^{-1}\)
C
\( \large 16\)
Hint:
Write \(8^3\) as a power of 2.
D
\( \large \dfrac{1}{16}\)
Hint:
Write \(8^3\) as a power of 2.
Question 1 Explanation: 
Topic: Laws of Exponents (Objective 0019).
Question 2

The Venn Diagram below gives data on the number of seniors, athletes, and vegetarians in the student body at a college:

How many students at the college are seniors who are not vegetarians?

A
\( \large 137\)
Hint:
Doesn't include the senior athletes who are not vegetarians.
B
\( \large 167\)
C
\( \large 197\)
Hint:
That's all seniors, including vegetarians.
D
\( \large 279\)
Hint:
Includes all athletes who are not vegetarians, some of whom are not seniors.
Question 2 Explanation: 
Topic: Venn Diagrams (Objective 0025)
Question 3

What set of transformations will transform the leftmost image into the rightmost image?

 
A

A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.

Hint:
Part of the figure would move below the x-axis with these transformations.
B

A translation 3 units up, followed by a reflection about the line y=x.

Hint:
See what happens to the point (5,1) under this set of transformations.
C

A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up.

D

A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.

Hint:
See what happens to the point (3,3) under this set of transformations.
Question 3 Explanation: 
Topic:Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations) (Objective 0024).
Question 4

Here is a student's work solving an equation:

\( x-4=-2x+6\)

\( x-4+4=-2x+6+4\)

\( x=-2x+10\)

\( x-2x=10\)

\( x=10\)

Which of the following statements is true?

A

The student‘s solution is correct.

Hint:
Try plugging into the original solution.
B

The student did not correctly use properties of equality.

Hint:
After \( x=-2x+10\), the student subtracted 2x on the left and added 2x on the right.
C

The student did not correctly use the distributive property.

Hint:
Distributive property is \(a(b+c)=ab+ac\).
D

The student did not correctly use the commutative property.

Hint:
Commutative property is \(a+b=b+a\) or \(ab=ba\).
Question 4 Explanation: 
Topic: Justify algebraic manipulations by application of the properties of equality, the order of operations, the number properties, and the order properties (Objective 0020).
Question 5

Cell phone plan A charges $3 per month plus $0.10 per minute. Cell phone plan B charges $29.99 per month, with no fee for the first 400 minutes and then $0.20 for each additional minute.

Which equation can be used to solve for the number of minutes, m (with m>400) that a person would have to spend on the phone each month in order for the bills for plan A and plan B to be equal?

A
\( \large 3.10m=400+0.2m\)
Hint:
These are the numbers in the problem, but this equation doesn't make sense. If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
B
\( \large 3+0.1m=29.99+.20m\)
Hint:
Doesn't account for the 400 free minutes.
C
\( \large 3+0.1m=400+29.99+.20(m-400)\)
Hint:
Why would you add 400 minutes and $29.99? If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
D
\( \large 3+0.1m=29.99+.20(m-400)\)
Hint:
The left side is $3 plus $0.10 times the number of minutes. The right is $29.99 plus $0.20 times the number of minutes over 400.
Question 5 Explanation: 
Identify variables and derive algebraic expressions that represent real-world situations (Objective 0020).
Question 6

A family on vacation drove the first 200 miles in 4 hours and the second 200 miles in 5 hours.  Which expression below gives their average speed for the entire trip?

A
\( \large \dfrac{200+200}{4+5}\)
Hint:
Average speed is total distance divided by total time.
B
\( \large \left( \dfrac{200}{4}+\dfrac{200}{5} \right)\div 2\)
Hint:
This seems logical, but the problem is that it weights the first 4 hours and the second 5 hours equally, when each hour should get the same weight in computing the average speed.
C
\( \large \dfrac{200}{4}+\dfrac{200}{5} \)
Hint:
This would be an average of 90 miles per hour!
D
\( \large \dfrac{400}{4}+\dfrac{400}{5} \)
Hint:
This would be an average of 180 miles per hour! Even a family of race car drivers probably doesn't have that average speed on a vacation!
Question 6 Explanation: 
Topic: Solve a variety of measurement problems (e.g., time, temperature, rates, average rates of change) in real-world situations (Objective 0023).
Question 7

The pattern below consists of a row of black squares surrounded by white squares.

 How many white squares would surround a row of 157 black squares?

A

314

Hint:
Try your procedure on a smaller number that you can count to see where you made a mistake.
B

317

Hint:
Are there ever an odd number of white squares?
C

320

Hint:
One way to see this is that there are 6 tiles on the left and right ends, and the rest of the white tiles are twice the number of black tiles (there are many other ways to look at it too).
D

322

Hint:
Try your procedure on a smaller number that you can count to see where you made a mistake.
Question 7 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic) (Objective 0021).
Question 8

Use the expression below to answer the question that follows.

                 \(\large \dfrac{\left( 155 \right)\times \left( 6,124 \right)}{977}\)

Which of the following is the best estimate of the expression above?

A

100

Hint:
6124/977 is approximately 6.
B

200

Hint:
6124/977 is approximately 6.
C

1,000

Hint:
6124/977 is approximately 6. 155 is approximately 150, and \( 6 \times 150 = 3 \times 300 = 900\), so this answer is closest.
D

2,000

Hint:
6124/977 is approximately 6.
Question 8 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016).
Question 9

Which of the following is equivalent to \(  \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}?\)

A
\( \large \dfrac{7}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
B
\( \large \dfrac{1}{2}\)
Hint:
Addition and subtraction are of equal priority in the order of operations -- do them left to right.
C
\( \large \dfrac{3}{4}\)
Hint:
\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}\)=\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}+-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}\)
D
\( \large \dfrac{3}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
Question 9 Explanation: 
Topic: Operations on Fractions, Order of Operations (Objective 0019).
Question 10

The letters A, B, and C represent digits (possibly equal) in the twelve digit number x=111,111,111,ABC.  For which values of A, B, and C is x divisible by 40?

A
\( \large A = 3, B = 2, C=0\)
Hint:
Note that it doesn't matter what the first 9 digits are, since 1000 is divisible by 40, so DEF,GHI,JKL,000 is divisible by 40 - we need to check the last 3.
B
\( \large A = 0, B = 0, C=4\)
Hint:
Not divisible by 10, since it doesn't end in 0.
C
\( \large A = 4, B = 2, C=0\)
Hint:
Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 420 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 18, which is not divisible by 8.
D
\( \large A =1, B=0, C=0\)
Hint:
Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 100 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 4, which is not divisible by 8.
Question 10 Explanation: 
Topic: Understand divisibility rules and why they work (Objective 018).
Question 11

Use the expression below to answer the question that follows:

                 \( \large \dfrac{\left( 7,154 \right)\times \left( 896 \right)}{216}\)

Which of the following is the best estimate of the expression above?

A

2,000

Hint:
The answer is bigger than 7,000.
B

20,000

Hint:
Estimate 896/216 first.
C

3,000

Hint:
The answer is bigger than 7,000.
D

30,000

Hint:
\( \dfrac{896}{216} \approx 4\) and \(7154 \times 4\) is over 28,000, so this answer is closest.
Question 11 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016, overlaps with other objectives).
Question 12

What is the probability that two randomly selected people were born on the same day of the week?  Assume that all days are equally probable.

A
\( \large \dfrac{1}{7}\)
Hint:
It doesn't matter what day the first person was born on. The probability that the second person will match is 1/7 (just designate one person the first and the other the second). Another way to look at it is that if you list the sample space of all possible pairs, e.g. (Wed, Sun), there are 49 such pairs, and 7 of them are repeats of the same day, and 7/49=1/7.
B
\( \large \dfrac{1}{14}\)
Hint:
What would be the sample space here? Ie, how would you list 14 things that you pick one from?
C
\( \large \dfrac{1}{42}\)
Hint:
If you wrote the seven days of the week on pieces of paper and put the papers in a jar, this would be the probability that the first person picked Sunday and the second picked Monday from the jar -- not the same situation.
D
\( \large \dfrac{1}{49}\)
Hint:
This is the probability that they are both born on a particular day, e.g. Sunday.
Question 12 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 13

The column below consists of two cubes and a cylinder.  The cylinder has diameter y, which is also the length of the sides of each cube.   The total height of the column is 5y.  Which of the formulas below gives the volume of the column?

 
A
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{4}\)
Hint:
The cubes each have volume \(y^3\). The cylinder has radius \(\dfrac{y}{2}\) and height \(3y\). The volume of a cylinder is \(\pi r^2 h=\pi ({\dfrac{y}{2}})^2(3y)=\dfrac{3\pi {{y}^{3}}}{4}\). Note that the volume of a cylinder is analogous to that of a prism -- area of the base times height.
B
\( \large 2{{y}^{3}}+3\pi {{y}^{3}}\)
Hint:
y is the diameter of the circle, not the radius.
C
\( \large {{y}^{3}}+5\pi {{y}^{3}}\)
Hint:
Don't forget to count both cubes.
D
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{8}\)
Hint:
Make sure you know how to find the volume of a cylinder.
Question 13 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
Question 14

The polygon depicted below is drawn on dot paper, with the dots spaced 1 unit apart.  What is the perimeter of the polygon?

A
\( \large 18+\sqrt{2} \text{ units}\)
Hint:
Be careful with the Pythagorean Theorem.
B
\( \large 18+2\sqrt{2}\text{ units}\)
Hint:
There are 13 horizontal or vertical 1 unit segments. The longer diagonal is the hypotenuse of a 3-4-5 right triangle, so its length is 5 units. The shorter diagonal is the hypotenuse of a 45-45-90 right triangle with side 2, so its hypotenuse has length \(2 \sqrt{2}\).
C
\( \large 18 \text{ units} \)
Hint:
Use the Pythagorean Theorem to find the lengths of the diagonal segments.
D
\( \large 20 \text{ units}\)
Hint:
Use the Pythagorean Theorem to find the lengths of the diagonal segments.
Question 14 Explanation: 
Topic: Recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 15

Which of the numbers below is not equivalent to 4%?

A
\( \large \dfrac{1}{25}\)
Hint:
1/25=4/100, so this is equal to 4% (be sure you read the question correctly).
B
\( \large \dfrac{4}{100}\)
Hint:
4/100=4% (be sure you read the question correctly).
C
\( \large 0.4\)
Hint:
0.4=40% so this is not equal to 4%
D
\( \large 0.04\)
Hint:
0.04=4/100, so this is equal to 4% (be sure you read the question correctly).
Question 15 Explanation: 
Converting between fractions, decimals, and percents (Objective 0017).
Question 16

Below are four inputs and outputs for a function machine representing the function A:

Which of the following equations could also represent A  for the values shown?

A
\( \large A(n)=n+4\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= -1 would output 3, not 0 as the machine does.
B
\( \large A(n)=n+2\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 4, not 6 as the machine does.
C
\( \large A(n)=2n+2\)
Hint:
Simply plug in each of the four function machine input values, and see that the equation produces the correct output, e.g. A(2)=6, A(-1)=0, etc.
D
\( \large A(n)=2\left( n+2 \right)\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 8, not 6 as the machine does.
Question 16 Explanation: 
Topics: Understand various representations of functions, and translate among different representations of functional relationships (Objective 0021).
Question 17

Which of the following points is closest to \( \dfrac{34}{135} \times \dfrac{53}{86}\)?

A

A

Hint:
\(\frac{34}{135} \approx \frac{1}{4}\) and \( \frac{53}{86} \approx \frac {2}{3}\). \(\frac {1}{4}\) of \(\frac {2}{3}\) is small and closest to A.
B

B

Hint:
Estimate with simpler fractions.
C

C

Hint:
Estimate with simpler fractions.
D

D

Hint:
Estimate with simpler fractions.
Question 17 Explanation: 
Topic: Understand meaning and models of operations on fractions (Objective 0019).
Question 18

A cylindrical soup can has diameter 7 cm and height 11 cm. The can holds g grams of soup.   How many grams of the same soup could a cylindrical can with diameter 14 cm and height 33 cm hold?

A
\( \large 6g\)
Hint:
You must scale in all three dimensions.
B
\( \large 12g\)
Hint:
Height is multiplied by 3, and diameter and radius are multiplied by 2. Since the radius is squared, final result is multiplied by \(2^2\times 3=12\).
C
\( \large 18g\)
Hint:
Don't square the height scale factor.
D
\( \large 36g\)
Hint:
Don't square the height scale factor.
Question 18 Explanation: 
Topic: Determine how the characteristics (e.g., area, volume) of geometric figures and shapes are affected by changes in their dimensions (Objective 0023).
Question 19

M is a multiple of 26.  Which of the following cannot be true?

A

M is odd.

Hint:
All multiples of 26 are also multiples of 2, so they must be even.
B

M is a multiple of 3.

Hint:
3 x 26 is a multiple of both 3 and 26.
C

M is 26.

Hint:
1 x 26 is a multiple of 26.
D

M is 0.

Hint:
0 x 26 is a multiple of 26.
Question 19 Explanation: 
Topic: Characteristics of composite numbers (Objective 0018).
Question 20

Aya and Kendra want to estimate the height of a tree. On a sunny day, Aya measures Kendra's shadow as 3 meters long, and Kendra measures the tree's shadow as 15 meters long. Kendra is 1.5 meters tall. How tall is the tree?

A

7.5 meters

Hint:
Here is a picture, note that the large and small right triangles are similar:

One way to do the problem is to note that there is a dilation (scale) factor of 5 on the shadows, so there must be that factor on the heights too. Another way is to note that the shadows are twice as long as the heights.
B

22.5 meters

Hint:
Draw a picture.
C

30 meters

Hint:
Draw a picture.
D

45 meters

Hint:
Draw a picture.
Question 20 Explanation: 
Topic: Apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to similarity, ; and use these concepts to solve problems (Objective 0024) . Fits in other places too.
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.