Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

Below are front, side, and top views of a three-dimensional solid.

Which of the following could be the solid shown above?

A

A sphere

Hint:
All views would be circles.
B

A cylinder

C

A cone

Hint:
Two views would be triangles, not rectangles.
D

A pyramid

Hint:
How would one view be a circle?
Question 1 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 2

An above-ground swimming pool is in the shape of a regular hexagonal prism, is one meter high, and holds 65 cubic meters of water.  A second pool has a base that is also a regular hexagon, but with sides twice as long as the sides in the first pool.  This second pool is also one meter high.  How much water will the second pool hold?

A
\( \large 65\text{ }{{\text{m}}^{3}}\)
Hint:
A bigger pool would hold more water.
B
\( \large 65\cdot 2\text{ }{{\text{m}}^{3}}\)
Hint:
Try a simpler example, say doubling the sides of the base of a 1 x 1 x 1 cube.
C
\( \large 65\cdot 4\text{ }{{\text{m}}^{3}}\)
Hint:
If we think of the pool as filled with 1 x 1 x 1 cubes (and some fractions of cubes), then scaling to the larger pool changes each 1 x 1 x 1 cube to a 2 x 2 x 1 prism, or multiplies volume by 4.
D
\( \large 65\cdot 8\text{ }{{\text{m}}^{3}}\)
Hint:
Try a simpler example, say doubling the sides of the base of a 1 x 1 x 1 cube.
Question 2 Explanation: 
Topic: Determine how the characteristics (e.g., area, volume) of geometric figures and shapes are affected by changes in their dimensions (Objective 0023).
Question 3

Which of the numbers below is a fraction equivalent to \( 0.\bar{6}\)?

A
\( \large \dfrac{4}{6}\)
Hint:
\( 0.\bar{6}=\dfrac{2}{3}=\dfrac{4}{6}\)
B
\( \large \dfrac{3}{5}\)
Hint:
This is equal to 0.6, without the repeating decimal. Answer is equivalent to choice c, which is another way to tell that it's wrong.
C
\( \large \dfrac{6}{10}\)
Hint:
This is equal to 0.6, without the repeating decimal. Answer is equivalent to choice b, which is another way to tell that it's wrong.
D
\( \large \dfrac{1}{6}\)
Hint:
This is less than a half, and \( 0.\bar{6}\) is greater than a half.
Question 3 Explanation: 
Topic: Converting between fraction and decimal representations (Objective 0017)
Question 4

A teacher has a list of all the countries in the world and their populations in March 2012.  She is going to have her students use technology to compute the mean and median of the numbers on the list.   Which of the following statements is true?

A

The teacher can be sure that the mean and median will be the same without doing any computation.

Hint:
Does this make sense? How likely is it that the mean and median of any large data set will be the same?
B

The teacher can be sure that the mean is bigger than the median without doing any computation.

Hint:
This is a skewed distribution, and very large countries like China and India contribute huge numbers to the mean, but are counted the same as small countries like Luxembourg in the median (the same thing happens w/data on salaries, where a few very high income people tilt the mean -- that's why such data is usually reported as medians).
C

The teacher can be sure that the median is bigger than the mean without doing any computation.

Hint:
Think about a set of numbers like 1, 2, 3, 4, 10,000 -- how do the mean/median compare? How might that relate to countries of the world?
D

There is no way for the teacher to know the relative size of the mean and median without computing them.

Hint:
Knowing the shape of the distribution of populations does give us enough info to know the relative size of the mean and median, even without computing them.
Question 4 Explanation: 
Topic: Use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 5

Elena is going to use a calculator to check whether or not 267 is prime. She will pick certain divisors, and then find 267 divided by each, and see if she gets a whole number. If she never gets a whole number, then she's found a prime. Which numbers does Elena NEED to check before she can stop checking and be sure she has a prime?

A

All natural numbers from 2 to 266.

Hint:
She only needs to check primes -- checking the prime factors of any composite is enough to look for divisors. As a test taking strategy, the other three choices involve primes, so worth thinking about.
B

All primes from 2 to 266 .

Hint:
Remember, factors come in pairs (except for square root factors), so she would first find the smaller of the pair and wouldn't need to check the larger.
C

All primes from 2 to 133 .

Hint:
She doesn't need to check this high. Factors come in pairs, and something over 100 is going to be paired with something less than 3, so she will find that earlier.
D

All primes from \( \large 2\) to \( \large \sqrt{267}\).

Hint:
\(\sqrt{267} \times \sqrt{267}=267\). Any other pair of factors will have one factor less than \( \sqrt{267}\) and one greater, so she only needs to check up to \( \sqrt{267}\).
Question 5 Explanation: 
Topic: Identify prime and composite numbers (Objective 0018).
Question 6

Use the graph below to answer the question that follows:

 

The graph above best matches which of the following scenarios:

A

George left home at 10:00 and drove to work on a crooked path. He was stopped in traffic at 10:30 and 10:45. He drove 30 miles total.

Hint:
Just because he ended up 30 miles from home doesn't mean he drove 30 miles total.
B

George drove to work. On the way to work there is a little hill and a big hill. He slowed down for them. He made it to work at 11:15.

Hint:
The graph is not a picture of the roads.
C

George left home at 10:15. He drove 10 miles, then realized he‘d forgotten something at home. He turned back and got what he‘d forgotten. Then he drove in a straight line, at many different speeds, until he got to work around 11:15.

Hint:
A straight line on a distance versus time graph means constant speed.
D

George left home at 10:15. He drove 10 miles, then realized he‘d forgotten something at home. He turned back and got what he‘d forgotten. Then he drove at a constant speed until he got to work around 11:15.

Question 6 Explanation: 
Topic: Use qualitative graphs to represent functional relationships in the real world (Objective 0021).
Question 7

Exactly one of the numbers below is a prime number.  Which one is it?

A
\( \large511 \)
Hint:
Divisible by 7.
B
\( \large517\)
Hint:
Divisible by 11.
C
\( \large519\)
Hint:
Divisible by 3.
D
\( \large521\)
Question 7 Explanation: 
Topics: Identify prime and composite numbers and demonstrate knowledge of divisibility rules (Objective 0018).
Question 8

Which of the following is not possible?

A

An equiangular triangle that is not equilateral.

Hint:
The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral.
B

An equiangular quadrilateral that is not equilateral.

Hint:
A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length).
C

An equilateral quadrilateral that is not equiangular.

Hint:
This rhombus has equal sides, but it doesn't have equal angles:
D

An equiangular hexagon that is not equilateral.

Hint:
This hexagon has equal angles, but it doesn't have equal sides:
Question 8 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles (Objective 0024).
Question 9

Below is a portion of a number line.

Point A is one-quarter of the distance from 0.26 to 0.28.  What number is represented by point A?

A
\( \large0.26\)
Hint:
Please reread the question.
B
\( \large0.2625\)
Hint:
This is one-quarter of the distance between 0.26 and 0.27, which is not what the question asked.
C
\( \large0.265\)
D
\( \large0.27\)
Hint:
Please read the question more carefully. This answer would be correct if Point A were halfway between the tick marks, but it's not.
Question 9 Explanation: 
Topic: Using number lines (Objective 0017)
Question 10

Which of the following nets will not fold into a cube?

A
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
B
C
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
D
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
Question 10 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 11

The letters A, B, and C represent digits (possibly equal) in the twelve digit number x=111,111,111,ABC.  For which values of A, B, and C is x divisible by 40?

A
\( \large A = 3, B = 2, C=0\)
Hint:
Note that it doesn't matter what the first 9 digits are, since 1000 is divisible by 40, so DEF,GHI,JKL,000 is divisible by 40 - we need to check the last 3.
B
\( \large A = 0, B = 0, C=4\)
Hint:
Not divisible by 10, since it doesn't end in 0.
C
\( \large A = 4, B = 2, C=0\)
Hint:
Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 420 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 18, which is not divisible by 8.
D
\( \large A =1, B=0, C=0\)
Hint:
Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 100 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 4, which is not divisible by 8.
Question 11 Explanation: 
Topic: Understand divisibility rules and why they work (Objective 018).
Question 12

A family has four children.  What is the probability that two children are girls and two are boys?  Assume the the probability of having a boy (or a girl) is 50%.

A
\( \large \dfrac{1}{2}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
B
\( \large \dfrac{1}{4}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
C
\( \large \dfrac{1}{5}\)
Hint:
Some configurations are more probable than others -- i.e. it's more likely to have two boys and two girls than all boys. Be sure you are weighting properly.
D
\( \large \dfrac{3}{8}\)
Hint:
There are two possibilities for each child, so there are \(2 \times 2 \times 2 \times 2 =16\) different configurations, e.g. from oldest to youngest BBBG, BGGB, GBBB, etc. Of these configurations, there are 6 with two boys and two girls (this is the combination \(_{4}C_{2}\) or "4 choose 2"): BBGG, BGBG, BGGB, GGBB, GBGB, and GBBG. Thus the probability is 6/16=3/8.
Question 12 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Question 13

The "houses" below are made of toothpicks and gum drops.

How many toothpicks are there in a row of 53 houses?

A

212

Hint:
Can the number of toothpicks be even?
B

213

Hint:
One way to see this is that every new "house" adds 4 toothpicks to the leftmost vertical toothpick -- so the total number is 1 plus 4 times the number of "houses." There are many other ways to look at the problem too.
C

217

Hint:
Try your strategy with a smaller number of "houses" so you can count and find your mistake.
D

265

Hint:
Remember that the "houses" overlap some walls.
Question 13 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic). (Objective 0021).
Question 14

A publisher prints a series of books with covers made of identical material and using the same thickness of paper for each page.  The covers of the book together are 0.4 cm thick, and 125 pieces of the paper used together are 1 cm thick.

The publisher uses a linear function to determine the total thickness, T(n) of a book made with n sheets of paper.   What are the slope and intercept of T(n)?

A

Intercept = 0.4 cm, Slope = 125 cm/page

Hint:
This would mean that each page of the book was 125 cm thick.
B

Intercept =0.4 cm, Slope = \(\dfrac{1}{125}\)cm/page

Hint:
The intercept is how thick the book would be with no pages in it. The slope is how much 1 extra page adds to the thickness of the book.
C

Intercept = 125 cm, Slope = 0.4 cm

Hint:
This would mean that with no pages in the book, it would be 125 cm thick.
D

Intercept = \(\dfrac{1}{125}\)cm, Slope = 0.4 pages/cm

Hint:
This would mean that each new page of the book made it 0.4 cm thicker.
Question 14 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 15

Which of the following is equal to one million three hundred thousand?

A
\(\large1.3\times {{10}^{6}}\)
B
\(\large1.3\times {{10}^{9}}\)
Hint:
That's one billion three hundred million.
C
\(\large1.03\times {{10}^{6}}\)
Hint:
That's one million thirty thousand.
D
\(\large1.03\times {{10}^{9}}\)
Hint:
That's one billion thirty million
Question 15 Explanation: 
Topic: Scientific Notation (Objective 0016)
Question 16

The first histogram shows the average life expectancies for women in different countries in Africa in 1998; the second histogram gives similar data for Europe:

  

How much bigger is the range of the data for Africa than the range of the data for Europe?

A

0 years

Hint:
Range is the maximum life expectancy minus the minimum life expectancy.
B

12 years

Hint:
Are you subtracting frequencies? Range is about values of the data, not frequency.
C

18 years

Hint:
It's a little hard to read the graph, but it doesn't matter if you're consistent. It looks like the range for Africa is 80-38= 42 years and for Europe is 88-64 = 24; 42-24=18.
D

42 years

Hint:
Read the question more carefully.
Question 16 Explanation: 
Topic: Compare different data sets (Objective 0025).
Question 17

What is the least common multiple of 540 and 216?

A
\( \large{{2}^{5}}\cdot {{3}^{6}}\cdot 5\)
Hint:
This is the product of the numbers, not the LCM.
B
\( \large{{2}^{3}}\cdot {{3}^{3}}\cdot 5\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then for each prime that's a factor of either number, use the largest exponent that appears in one of the factorizations. You can also take the product of the two numbers divided by their GCD.
C
\( \large{{2}^{2}}\cdot {{3}^{3}}\cdot 5\)
Hint:
216 is a multiple of 8.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\cdot {{5}^{2}}\)
Hint:
Not a multiple of 216 and not a multiple of 540.
Question 17 Explanation: 
Topic: Find the least common multiple of a set of numbers (Objective 0018).
Question 18

Use the graph below to answer the question that follows.

 

Which of the following is a correct equation for the graph of the line depicted above?

 
A
\( \large y=-\dfrac{1}{2}x+2\)
Hint:
The slope is -1/2 and the y-intercept is 2. You can also try just plugging in points. For example, this is the only choice that gives y=1 when x=2.
B
\( \large 4x=2y\)
Hint:
This line goes through (0,0); the graph above does not.
C
\( \large y=x+2\)
Hint:
The line pictured has negative slope.
D
\( \large y=-x+2\)
Hint:
Try plugging x=4 into this equation and see if that point is on the graph above.
Question 18 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 19

A solution requires 4 ml of saline for every 7 ml of medicine. How much saline would be required for 50 ml of medicine?

A
\( \large 28 \dfrac{4}{7}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. The extra ml of saline requires 4 ml saline/ 7 ml medicine = 4/7 ml saline per 1 ml medicine.
B
\( \large 28 \dfrac{1}{4}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
C
\( \large 28 \dfrac{1}{7}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
D
\( \large 87.5\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
Question 19 Explanation: 
Topic: Apply proportional thinking to estimate quantities in real world situations (Objective 0019).
Question 20

In the triangle below, \(\overline{AC}\cong \overline{AD}\cong \overline{DE}\) and \(m\angle CAD=100{}^\circ \).  What is \(m\angle DAE\)?

A
\( \large 20{}^\circ \)
Hint:
Angles ACD and ADC are congruent since they are base angles of an isosceles triangle. Since the angles of a triangle sum to 180, they sum to 80, and they are 40 deg each. Thus angle ADE is 140 deg, since it makes a straight line with angle ADC. Angles DAE and DEA are base angles of an isosceles triangle and thus congruent-- they sum to 40 deg, so are 20 deg each.
B
\( \large 25{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
C
\( \large 30{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
D
\( \large 40{}^\circ \)
Hint:
Make sure you're calculating the correct angle.
Question 20 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles, including real-world applications. (Objective 0024).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.