Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

Which of the numbers below is the decimal equivalent of \( \dfrac{3}{8}?\)

A

0.38

Hint:
If you are just writing the numerator next to the denominator then your technique is way off, but by coincidence your answer is close; try with 2/3 and 0.23 is nowhere near correct.
B

0.125

Hint:
This is 1/8, not 3/8.
C

0.375

D

0.83

Hint:
3/8 is less than a half, and 0.83 is more than a half, so they can't be equal.
Question 1 Explanation: 
Topic: Converting between fractions and decimals (Objective 0017)
Question 2

Which of the lines depicted below is a graph of \( \large y=2x-5\)?

A

a

Hint:
The slope of line a is negative.
B

b

Hint:
Wrong slope and wrong intercept.
C

c

Hint:
The intercept of line c is positive.
D

d

Hint:
Slope is 2 -- for every increase of 1 in x, y increases by 2. Intercept is -5 -- the point (0,-5) is on the line.
Question 2 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 3

Which of the following nets will not fold into a cube?

A
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
B
C
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
D
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
Question 3 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 4

A homeowner is planning to tile the kitchen floor with tiles that measure 6 inches by 8 inches.  The kitchen floor is a rectangle that measures 10 ft by 12 ft, and there are no gaps between the tiles.  How many tiles does the homeowner need?

A

30

Hint:
The floor is 120 sq feet, and the tiles are smaller than 1 sq foot. Also, remember that 1 sq foot is 12 \(\times\) 12=144 sq inches.
B

120

Hint:
The floor is 120 sq feet, and the tiles are smaller than 1 sq foot.
C

300

Hint:
Recheck your calculations.
D

360

Hint:
One way to do this is to note that 6 inches = 1/2 foot and 8 inches = 2/3 foot, so the area of each tile is 1/2 \(\times\) 2/3=1/3 sq foot, or each square foot of floor requires 3 tiles. The area of the floor is 120 square feet. Note that the tiles would fit evenly oriented in either direction, parallel to the walls.
Question 4 Explanation: 
Topic: Estimate and calculate measurements, use unit conversions to solve measurement problems, solve measurement problems in real-world situations (Objective 0023).
Question 5

M is a multiple of 26.  Which of the following cannot be true?

A

M is odd.

Hint:
All multiples of 26 are also multiples of 2, so they must be even.
B

M is a multiple of 3.

Hint:
3 x 26 is a multiple of both 3 and 26.
C

M is 26.

Hint:
1 x 26 is a multiple of 26.
D

M is 0.

Hint:
0 x 26 is a multiple of 26.
Question 5 Explanation: 
Topic: Characteristics of composite numbers (Objective 0018).
Question 6

Use the table below to answer the question that follows:

Gordon wants to buy three pounds of nuts.  Each of the stores above ordinarily sells the nuts for $4.99 a pound, but is offering a discount this week.  At which store can he buy the nuts for the least amount of money?

A

Store A

Hint:
This would save about $2.50. You can quickly see that D saves more.
B

Store B

Hint:
This saves 15% and C saves 25%.
C

Store C

D

Store D

Hint:
This is about 20% off, which is less of a discount than C.
Question 6 Explanation: 
Topic: Understand the meanings and models of integers, fractions, decimals,percents, and mixed numbers and apply them to the solution of word problems (Objective 0017).
Question 7

A family went on a long car trip.  Below is a graph of how far they had driven at each hour.

Which of the following is closest to their average speed driving on the trip?

 
A
\( \large d=20t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
B
\( \large d=30t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
C
\( \large d=40t\)
D
\( \large d=50t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
Question 7 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Question 8

Taxicab fares in Boston (Spring 2012) are $2.60 for the first \(\dfrac{1}{7}\) of a mile or less and $0.40 for each \(\dfrac{1}{7}\) of a mile after that.

Let d represent the distance a passenger travels in miles (with \(d>\dfrac{1}{7}\)). Which of the following expressions represents the total fare?

A
\( \large \$2.60+\$0.40d\)
Hint:
It's 40 cents for 1/7 of a mile, not per mile.
B
\( \large \$2.60+\$0.40\dfrac{d}{7}\)
Hint:
According to this equation, going 7 miles would cost $3; does that make sense?
C
\( \large \$2.20+\$2.80d\)
Hint:
You can think of the fare as $2.20 to enter the cab, and then $0.40 for each 1/7 of a mile, including the first 1/7 of a mile (or $2.80 per mile).

Alternatively, you pay $2.60 for the first 1/7 of a mile, and then $2.80 per mile for d-1/7 miles. The total is 2.60+2.80(d-1/7) = 2.60+ 2.80d -.40 = 2.20+2.80d.
D
\( \large \$2.60+\$2.80d\)
Hint:
Don't count the first 1/7 of a mile twice.
Question 8 Explanation: 
Topic: Identify variables and derive algebraic expressions that represent real-world situations (Objective 0020), and select the linear equation that best models a real-world situation (Objective 0022).
Question 9

Use the four figures below to answer the question that follows:

How many of the figures pictured above have at least one line of reflective symmetry?

A
\( \large 1\)
B
\( \large 2\)
Hint:
The ellipse has 2 lines of reflective symmetry (horizontal and vertical, through the center) and the triangle has 3. The other two figures have rotational symmetry, but not reflective symmetry.
C
\( \large 3\)
D
\( \large 4\)
Hint:
All four have rotational symmetry, but not reflective symmetry.
Question 9 Explanation: 
Topic: Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry, similarity, and congruence; and use these concepts to solve problems (Objective 0024).
Question 10

Use the graph below to answer the question that follows:

 

The graph above best matches which of the following scenarios:

A

George left home at 10:00 and drove to work on a crooked path. He was stopped in traffic at 10:30 and 10:45. He drove 30 miles total.

Hint:
Just because he ended up 30 miles from home doesn't mean he drove 30 miles total.
B

George drove to work. On the way to work there is a little hill and a big hill. He slowed down for them. He made it to work at 11:15.

Hint:
The graph is not a picture of the roads.
C

George left home at 10:15. He drove 10 miles, then realized he‘d forgotten something at home. He turned back and got what he‘d forgotten. Then he drove in a straight line, at many different speeds, until he got to work around 11:15.

Hint:
A straight line on a distance versus time graph means constant speed.
D

George left home at 10:15. He drove 10 miles, then realized he‘d forgotten something at home. He turned back and got what he‘d forgotten. Then he drove at a constant speed until he got to work around 11:15.

Question 10 Explanation: 
Topic: Use qualitative graphs to represent functional relationships in the real world (Objective 0021).
Question 11

The expression \( \large {{7}^{-4}}\cdot {{8}^{-6}}\) is equal to which of the following?

A
\( \large \dfrac{8}{{{\left( 56 \right)}^{4}}}\)
Hint:
The bases are whole numbers, and the exponents are negative. How can the numerator be 8?
B
\( \large \dfrac{64}{{{\left( 56 \right)}^{4}}}\)
Hint:
The bases are whole numbers, and the exponents are negative. How can the numerator be 64?
C
\( \large \dfrac{1}{8\cdot {{\left( 56 \right)}^{4}}}\)
Hint:
\(8^{-6}=8^{-4} \times 8^{-2}\)
D
\( \large \dfrac{1}{64\cdot {{\left( 56 \right)}^{4}}}\)
Question 11 Explanation: 
Topics: Laws of exponents (Objective 0019).
Question 12

Which of the following values of x satisfies the inequality \( \large \left| {{(x+2)}^{3}} \right|<3?\)

A
\( \large x=-3\)
Hint:
\( \left| {{(-3+2)}^{3}} \right|\)=\( \left | {(-1)}^3 \right | \)=\( \left | -1 \right |=1 \) .
B
\( \large x=0\)
Hint:
\( \left| {{(0+2)}^{3}} \right|\)=\( \left | {2}^3 \right | \)=\( \left | 8 \right | \) =\( 8\)
C
\( \large x=-4\)
Hint:
\( \left| {{(-4+2)}^{3}} \right|\)=\( \left | {(-2)}^3 \right | \)=\( \left | -8 \right | \) =\( 8\)
D
\( \large x=1\)
Hint:
\( \left| {{(1+2)}^{3}} \right|\)=\( \left | {3}^3 \right | \)=\( \left | 27 \right | \) = \(27\)
Question 12 Explanation: 
Topics: Laws of exponents, order of operations, interpret absolute value (Objective 0019).
Question 13

What is the greatest common factor of 540 and 216?

A
\( \large{{2}^{2}}\cdot {{3}^{3}}\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then take the smaller power for each prime that is a factor of both numbers.
B
\( \large2\cdot 3\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
C
\( \large{{2}^{3}}\cdot {{3}^{3}}\)
Hint:
\(2^3 = 8\) is not a factor of 540.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
Question 13 Explanation: 
Topic: Find the greatest common factor of a set of numbers (Objective 0018).
Question 14

Below is a portion of a number line.

Point A is one-quarter of the distance from 0.26 to 0.28.  What number is represented by point A?

A
\( \large0.26\)
Hint:
Please reread the question.
B
\( \large0.2625\)
Hint:
This is one-quarter of the distance between 0.26 and 0.27, which is not what the question asked.
C
\( \large0.265\)
D
\( \large0.27\)
Hint:
Please read the question more carefully. This answer would be correct if Point A were halfway between the tick marks, but it's not.
Question 14 Explanation: 
Topic: Using number lines (Objective 0017)
Question 15

Which of the lists below is in order from least to greatest value?

A
\( \large \dfrac{1}{2},\quad \dfrac{1}{3},\quad \dfrac{1}{4},\quad \dfrac{1}{5}\)
Hint:
This is ordered from greatest to least.
B
\( \large \dfrac{1}{3},\quad \dfrac{2}{7},\quad \dfrac{3}{8},\quad \dfrac{4}{11}\)
Hint:
1/3 = 2/6 is bigger than 2/7.
C
\( \large \dfrac{1}{4},\quad \dfrac{2}{5},\quad \dfrac{2}{3},\quad \dfrac{4}{5}\)
Hint:
One way to look at this: 1/4 and 2/5 are both less than 1/2, and 2/3 and 4/5 are both greater than 1/2. 1/4 is 25% and 2/5 is 40%, so 2/5 is greater. The distance from 2/3 to 1 is 1/3 and from 4/5 to 1 is 1/5, and 1/5 is less than 1/3, so 4/5 is bigger.
D
\( \large \dfrac{7}{8},\quad \dfrac{6}{7},\quad \dfrac{5}{6},\quad \dfrac{4}{5}\)
Hint:
This is in order from greatest to least.
Question 15 Explanation: 
Topic: Ordering Fractions (Objective 0017)
Question 16

Which of the following is equal to eleven billion four hundred thousand?

A
\( \large 11,400,000\)
Hint:
That's eleven million four hundred thousand.
B
\(\large11,000,400,000\)
C
\( \large11,000,000,400,000\)
Hint:
That's eleven trillion four hundred thousand (although with British conventions; this answer is correct, but in the US, it isn't).
D
\( \large 11,400,000,000\)
Hint:
That's eleven billion four hundred million
Question 16 Explanation: 
Topic: Place Value (Objective 0016)
Question 17

The equation \( \large F=\frac{9}{5}C+32\) is used to convert a temperature measured in Celsius to the equivalent Farentheit temperature.

A patient's temperature increased by 1.5° Celcius.  By how many degrees Fahrenheit did her temperature increase?

A

1.5°

Hint:
Celsius and Fahrenheit don't increase at the same rate.
B

1.8°

Hint:
That's how much the Fahrenheit temp increases when the Celsius temp goes up by 1 degree.
C

2.7°

Hint:
Each degree increase in Celsius corresponds to a \(\dfrac{9}{5}=1.8\) degree increase in Fahrenheit. Thus the increase is 1.8+0.9=2.7.
D

Not enough information.

Hint:
A linear equation has constant slope, which means that every increase of the same amount in one variable, gives a constant increase in the other variable. It doesn't matter what temperature the patient started out at.
Question 17 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 18

The histogram below shows the number of pairs of footware owned by a group of college students.

Which of the following statements can be inferred from the graph above?

A

The median number of pairs of footware owned is between 50 and 60 pairs.

Hint:
The same number of data points are less than the median as are greater than the median -- but on this histogram, clearly more than half the students own less than 50 pairs of shoes, so the median is less than 50.
B

The mode of the number of pairs of footware owned is 20.

Hint:
The mode is the most common number of pairs of footwear owned. We can't tell it from this histogram because each bar represents 10 different numbers-- perhaps 8 students each own each number from 10 to 19, but 40 students own exactly 6 pairs of shoes.... or perhaps not....
C

The mean number of pairs of footware owned is less than the median number of pairs of footware owned.

Hint:
This is a right skewed distribution, and so the mean is bigger than the median -- the few large values on the right pull up the mean, but have little effect on the median.
D

The median number of pairs of footware owned is between 10 and 20.

Hint:
There are approximately 230 students represented in this survey, and the 41st through 120th lowest values are between 10 and 20 -- thus the middle value is in that range.
Question 18 Explanation: 
Topics: Analyze and interpret various graphic and data representations, and use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 19

Below are front, side, and top views of a three-dimensional solid.

Which of the following could be the solid shown above?

A

A sphere

Hint:
All views would be circles.
B

A cylinder

C

A cone

Hint:
Two views would be triangles, not rectangles.
D

A pyramid

Hint:
How would one view be a circle?
Question 19 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 20

What set of transformations will transform the leftmost image into the rightmost image?

 
A

A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.

Hint:
Part of the figure would move below the x-axis with these transformations.
B

A translation 3 units up, followed by a reflection about the line y=x.

Hint:
See what happens to the point (5,1) under this set of transformations.
C

A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up.

D

A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.

Hint:
See what happens to the point (3,3) under this set of transformations.
Question 20 Explanation: 
Topic:Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations) (Objective 0024).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.