Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

Given that 10 cm is approximately equal to 4 inches, which of the following expressions models a way to find out approximately how many inches are equivalent to 350 cm?

A
\( \large 350\times \left( \dfrac{10}{4} \right)\)
Hint:
The final result should be smaller than 350, and this answer is bigger.
B
\( \large 350\times \left( \dfrac{4}{10} \right)\)
Hint:
Dimensional analysis can help here: \(350 \text{cm} \times \dfrac{4 \text{in}}{10 \text{cm}}\). The cm's cancel and the answer is in inches.
C
\( \large (10-4) \times 350 \)
Hint:
This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense.
D
\( \large (350-10) \times 4\)
Hint:
This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense.
Question 1 Explanation: 
Topic: Applying fractions to word problems (Objective 0017) This problem is similar to one on the official sample test for that objective, but it might fit better into unit conversion and dimensional analysis (Objective 0023: Measurement)
Question 2

The window glass below has the shape of a semi-circle on top of a square, where the side of the square has length x.  It was cut from one piece of glass.

What is the perimeter of the window glass?

A
\( \large 3x+\dfrac{\pi x}{2}\)
Hint:
By definition, \(\pi\) is the ratio of the circumference of a circle to its diameter; thus the circumference is \(\pi d\). Since we have a semi-circle, its perimeter is \( \dfrac{1}{2} \pi x\). Only 3 sides of the square contribute to the perimeter.
B
\( \large 3x+2\pi x\)
Hint:
Make sure you know how to find the circumference of a circle.
C
\( \large 3x+\pi x\)
Hint:
Remember it's a semi-circle, not a circle.
D
\( \large 4x+2\pi x\)
Hint:
Only 3 sides of the square contribute to the perimeter.
Question 2 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
Question 3

Which of the following is an irrational number?

A
\( \large \sqrt[3]{8}\)
Hint:
This answer is the cube root of 8. Since 2 x 2 x 2 =8, this is equal to 2, which is rational because 2 = 2/1.
B
\( \large \sqrt{8}\)
Hint:
It is not trivial to prove that this is irrational, but you can get this answer by eliminating the other choices.
C
\( \large \dfrac{1}{8}\)
Hint:
1/8 is the RATIO of two integers, so it is rational.
D
\( \large -8\)
Hint:
Negative integers are also rational, -8 = -8/1, a ratio of integers.
Question 3 Explanation: 
Topic: Identifying rational and irrational numbers (Objective 0016).
Question 4

A biology class requires a lab fee, which is a whole number of dollars, and the same amount for all students. On Monday the instructor collected $70 in fees, on Tuesday she collected $126, and on Wednesday she collected $266. What is the largest possible amount the fee could be?

A

$2

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
B

$7

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
C

$14

Hint:
This is the greatest common factor of 70, 126, and 266.
D

$70

Hint:
Not a factor of 126 or 266, so couldn't be correct.
Question 4 Explanation: 
Topic: Use GCF in real-world context (Objective 0018)
Question 5

A family has four children.  What is the probability that two children are girls and two are boys?  Assume the the probability of having a boy (or a girl) is 50%.

A
\( \large \dfrac{1}{2}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
B
\( \large \dfrac{1}{4}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
C
\( \large \dfrac{1}{5}\)
Hint:
Some configurations are more probable than others -- i.e. it's more likely to have two boys and two girls than all boys. Be sure you are weighting properly.
D
\( \large \dfrac{3}{8}\)
Hint:
There are two possibilities for each child, so there are \(2 \times 2 \times 2 \times 2 =16\) different configurations, e.g. from oldest to youngest BBBG, BGGB, GBBB, etc. Of these configurations, there are 6 with two boys and two girls (this is the combination \(_{4}C_{2}\) or "4 choose 2"): BBGG, BGBG, BGGB, GGBB, GBGB, and GBBG. Thus the probability is 6/16=3/8.
Question 5 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Question 6

The table below gives the result of a survey at a college, asking students whether they were residents or commuters:

Based on the above data, what is the probability that a randomly chosen commuter student is a junior or a senior?

 
A
\( \large \dfrac{34}{43}\)
B
\( \large \dfrac{34}{71}\)
Hint:
This is the probability that a randomly chosen junior or senior is a commuter student.
C
\( \large \dfrac{34}{147}\)
Hint:
This is the probability that a randomly chosen student is a junior or senior who is a commuter.
D
\( \large \dfrac{71}{147}\)
Hint:
This is the probability that a randomly chosen student is a junior or a senior.
Question 6 Explanation: 
Topic: Recognize and apply the concept of conditional probability (Objective 0026).
Question 7

Aya and Kendra want to estimate the height of a tree. On a sunny day, Aya measures Kendra's shadow as 3 meters long, and Kendra measures the tree's shadow as 15 meters long. Kendra is 1.5 meters tall. How tall is the tree?

A

7.5 meters

Hint:
Here is a picture, note that the large and small right triangles are similar:

One way to do the problem is to note that there is a dilation (scale) factor of 5 on the shadows, so there must be that factor on the heights too. Another way is to note that the shadows are twice as long as the heights.
B

22.5 meters

Hint:
Draw a picture.
C

30 meters

Hint:
Draw a picture.
D

45 meters

Hint:
Draw a picture.
Question 7 Explanation: 
Topic: Apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to similarity, ; and use these concepts to solve problems (Objective 0024) . Fits in other places too.
Question 8

Which of the following nets will not fold into a cube?

A
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
B
C
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
D
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
Question 8 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 9

The chart below gives percentiles for the number of sit-ups that boys of various ages can do in 60 seconds (source , June 24, 2011)

 

Which of the following statements can be inferred from the above chart?

A

95% of 12 year old boys can do 56 sit-ups in 60 seconds.

Hint:
The 95th percentile means that 95% of scores are less than or equal to 56, and 5% are greater than or equal to 56.
B

At most 25% of 7 year old boys can do 19 or more sit-ups in 60 seconds.

Hint:
The 25th percentile means that 25% of scores are less than or equal to 19, and 75% are greater than or equal to 19.
C

Half of all 13 year old boys can do less than 41 sit-ups in 60 seconds and half can do more than 41 sit-ups in 60 seconds.

Hint:
Close, but not quite. There's no accounting for boys who can do exactly 41 sit ups. Look at these data: 10, 20, 41, 41, 41, 41, 50, 60, 90. The median is 41, but more than half can do 41 or more.
D

At least 75% of 16 year old boys can only do 51 or fewer sit-ups in 60 seconds.

Hint:
The "at least" is necessary due to duplicates. Suppose the data were 10, 20, 51, 51. The 75th percentile is 51, but 100% of the boys can only do 51 or fewer situps.
Question 9 Explanation: 
Topic: Analyze and interpret various graphic and nongraphic data representations (e.g., frequency distributions, percentiles) (Objective 0025).
Question 10

The Americans with Disabilties Act (ADA) regulations state that the maximum slope for a wheelchair ramp in new construction is 1:12, although slopes between 1:16 and 1:20 are preferred.  The maximum rise for any run is 30 inches.   The graph below shows the rise and runs of four different wheelchair ramps.  Which ramp is in compliance with the ADA regulations for new construction?

A

A

Hint:
Rise is more than 30 inches.
B

B

Hint:
Run is almost 24 feet, so rise can be almost 2 feet.
C

C

Hint:
Run is 12 feet, so rise can be at most 1 foot.
D

D

Hint:
Slope is 1:10 -- too steep.
Question 10 Explanation: 
Topic: Interpret meaning of slope in a real world situation (Objective 0022).
Question 11

A family went on a long car trip.  Below is a graph of how far they had driven at each hour.

Which of the following is closest to their average speed driving on the trip?

 
A
\( \large d=20t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
B
\( \large d=30t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
C
\( \large d=40t\)
D
\( \large d=50t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
Question 11 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Question 12

Use the table below to answer the question that follows:

Gordon wants to buy three pounds of nuts.  Each of the stores above ordinarily sells the nuts for $4.99 a pound, but is offering a discount this week.  At which store can he buy the nuts for the least amount of money?

A

Store A

Hint:
This would save about $2.50. You can quickly see that D saves more.
B

Store B

Hint:
This saves 15% and C saves 25%.
C

Store C

D

Store D

Hint:
This is about 20% off, which is less of a discount than C.
Question 12 Explanation: 
Topic: Understand the meanings and models of integers, fractions, decimals,percents, and mixed numbers and apply them to the solution of word problems (Objective 0017).
Question 13

Which of the following is not possible?

A

An equiangular triangle that is not equilateral.

Hint:
The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral.
B

An equiangular quadrilateral that is not equilateral.

Hint:
A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length).
C

An equilateral quadrilateral that is not equiangular.

Hint:
This rhombus has equal sides, but it doesn't have equal angles:
D

An equiangular hexagon that is not equilateral.

Hint:
This hexagon has equal angles, but it doesn't have equal sides:
Question 13 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles (Objective 0024).
Question 14

A sales companies pays its representatives $2 for each item sold, plus 40% of the price of the item.   The rest of the money that the representatives collect goes to the company.  All transactions are in cash, and all items cost $4 or more.   If the price of an item in dollars is p, which expression represents the amount of money the company collects when the item is sold?

A
\( \large \dfrac{3}{5}p-2\)
Hint:
The company gets 3/5=60% of the price, minus the $2 per item.
B
\( \large \dfrac{3}{5}\left( p-2 \right)\)
Hint:
This is sensible, but not what the problem states.
C
\( \large \dfrac{2}{5}p+2\)
Hint:
The company pays the extra $2; it doesn't collect it.
D
\( \large \dfrac{2}{5}p-2\)
Hint:
This has the company getting 2/5 = 40% of the price of each item, but that's what the representative gets.
Question 14 Explanation: 
Topic: Use algebra to solve word problems involving fractions, ratios, proportions, and percents (Objective 0020).
Question 15

The chairs in a large room can be arranged in rows of 18, 25, or 60 with no chairs left over. If C is the smallest possible number of chairs in the room, which of the following inequalities does C satisfy?

A
\( \large C\le 300\)
Hint:
Find the LCM.
B
\( \large 300 < C \le 500 \)
Hint:
Find the LCM.
C
\( \large 500 < C \le 700 \)
Hint:
Find the LCM.
D
\( \large C>700\)
Hint:
The LCM is 900, which is the smallest number of chairs.
Question 15 Explanation: 
Topic: Apply LCM in "real-world" situations (according to standardized tests....) (Objective 0018).
Question 16

What is the greatest common factor of 540 and 216?

A
\( \large{{2}^{2}}\cdot {{3}^{3}}\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then take the smaller power for each prime that is a factor of both numbers.
B
\( \large2\cdot 3\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
C
\( \large{{2}^{3}}\cdot {{3}^{3}}\)
Hint:
\(2^3 = 8\) is not a factor of 540.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
Question 16 Explanation: 
Topic: Find the greatest common factor of a set of numbers (Objective 0018).
Question 17

A map has a scale of 3 inches = 100 miles.  Cities A and B are 753 miles apart.  Let d be the distance between the two cities on the map.  Which of the following is not correct?

A
\( \large \dfrac{3}{100}=\dfrac{d}{753}\)
Hint:
Units on both side are inches/mile, and both numerators and denominators correspond -- this one is correct.
B
\( \large \dfrac{3}{100}=\dfrac{753}{d}\)
Hint:
Unit on the left is inches per mile, and on the right is miles per inch. The proportion is set up incorrectly (which is what we wanted). Another strategy is to notice that one of A or B has to be the answer because they cannot both be correct proportions. Then check that cross multiplying on A gives part D, so B is the one that is different from the other 3.
C
\( \large \dfrac{3}{d}=\dfrac{100}{753}\)
Hint:
Unitless on each side, as inches cancel on the left and miles on the right. Numerators correspond to the map, and denominators to the real life distances -- this one is correct.
D
\( \large 100d=3\cdot 753\)
Hint:
This is equivalent to part A.
Question 17 Explanation: 
Topic: Analyze the relationships among proportions, constant rates, and linear functions (Objective 0022).
Question 18

Use the solution procedure below to answer the question that follows:

\( \large {\left( x+3 \right)}^{2}=10\)

\( \large \left( x+3 \right)\left( x+3 \right)=10\)

\( \large {x}^{2}+9=10\)

\( \large {x}^{2}+9-9=10-9\)

\( \large {x}^{2}=1\)

\( \large x=1\text{ or }x=-1\)

Which of the following is incorrect in the procedure shown above?

A

The commutative property is used incorrectly.

Hint:
The commutative property is \(a+b=b+a\) or \(ab=ba\).
B

The associative property is used incorrectly.

Hint:
The associative property is \(a+(b+c)=(a+b)+c\) or \(a \times (b \times c)=(a \times b) \times c\).
C

Order of operations is done incorrectly.

D

The distributive property is used incorrectly.

Hint:
\((x+3)(x+3)=x(x+3)+3(x+3)\)=\(x^2+3x+3x+9.\)
Question 18 Explanation: 
Topic: Justify algebraic manipulations by application of the properties of equality, the order of operations, the number properties, and the order properties (Objective 0020).
Question 19

Which of the following is equal to eleven billion four hundred thousand?

A
\( \large 11,400,000\)
Hint:
That's eleven million four hundred thousand.
B
\(\large11,000,400,000\)
C
\( \large11,000,000,400,000\)
Hint:
That's eleven trillion four hundred thousand (although with British conventions; this answer is correct, but in the US, it isn't).
D
\( \large 11,400,000,000\)
Hint:
That's eleven billion four hundred million
Question 19 Explanation: 
Topic: Place Value (Objective 0016)
Question 20

P is a prime number that divides 240.  Which of the following must be true?

A

P divides 30

Hint:
2, 3, and 5 are the prime factors of 240, and all divide 30.
B

P divides 48

Hint:
P=5 doesn't work.
C

P divides 75

Hint:
P=2 doesn't work.
D

P divides 80

Hint:
P=3 doesn't work.
Question 20 Explanation: 
Topic: Find the prime factorization of a number and recognize its uses (Objective 0018).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.