Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

Here is a student's work solving an equation:

\( x-4=-2x+6\)

\( x-4+4=-2x+6+4\)

\( x=-2x+10\)

\( x-2x=10\)

\( x=10\)

Which of the following statements is true?

A

The student‘s solution is correct.

Hint:
Try plugging into the original solution.
B

The student did not correctly use properties of equality.

Hint:
After \( x=-2x+10\), the student subtracted 2x on the left and added 2x on the right.
C

The student did not correctly use the distributive property.

Hint:
Distributive property is \(a(b+c)=ab+ac\).
D

The student did not correctly use the commutative property.

Hint:
Commutative property is \(a+b=b+a\) or \(ab=ba\).
Question 1 Explanation: 
Topic: Justify algebraic manipulations by application of the properties of equality, the order of operations, the number properties, and the order properties (Objective 0020).
Question 2

What is the length of side \(\overline{BD}\) in the triangle below, where \(\angle DBA\) is a right angle?

A
\( \large 1\)
Hint:
Use the Pythagorean Theorem.
B
\( \large \sqrt{5}\)
Hint:
\(2^2+e^2=3^2\) or \(4+e^2=9;e^2=5; e=\sqrt{5}\).
C
\( \large \sqrt{13}\)
Hint:
e is not the hypotenuse.
D
\( \large 5\)
Hint:
Use the Pythagorean Theorem.
Question 2 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023), and recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 3

An above-ground swimming pool is in the shape of a regular hexagonal prism, is one meter high, and holds 65 cubic meters of water.  A second pool has a base that is also a regular hexagon, but with sides twice as long as the sides in the first pool.  This second pool is also one meter high.  How much water will the second pool hold?

A
\( \large 65\text{ }{{\text{m}}^{3}}\)
Hint:
A bigger pool would hold more water.
B
\( \large 65\cdot 2\text{ }{{\text{m}}^{3}}\)
Hint:
Try a simpler example, say doubling the sides of the base of a 1 x 1 x 1 cube.
C
\( \large 65\cdot 4\text{ }{{\text{m}}^{3}}\)
Hint:
If we think of the pool as filled with 1 x 1 x 1 cubes (and some fractions of cubes), then scaling to the larger pool changes each 1 x 1 x 1 cube to a 2 x 2 x 1 prism, or multiplies volume by 4.
D
\( \large 65\cdot 8\text{ }{{\text{m}}^{3}}\)
Hint:
Try a simpler example, say doubling the sides of the base of a 1 x 1 x 1 cube.
Question 3 Explanation: 
Topic: Determine how the characteristics (e.g., area, volume) of geometric figures and shapes are affected by changes in their dimensions (Objective 0023).
Question 4

In March of 2012, 1 dollar was worth the same as 0.761 Euros, and 1 dollar was also worth the same as 83.03 Japanese Yen.  Which of the expressions below gives the number of Yen that are worth 1 Euro?

A
\( \large {83}.0{3}\cdot 0.{761}\)
Hint:
This equation gives less than the number of yen per dollar, but 1 Euro is worth more than 1 dollar.
B
\( \large \dfrac{0.{761}}{{83}.0{3}}\)
Hint:
Number is way too small.
C
\( \large \dfrac{{83}.0{3}}{0.{761}}\)
Hint:
One strategy here is to use easier numbers, say 1 dollar = .5 Euros and 100 yen, then 1 Euro would be 200 Yen (change the numbers in the equations and see what works). Another is to use dimensional analysis: we want # yen per Euro, or yen/Euro = yen/dollar \(\times\) dollar/Euro = \(83.03 \times \dfrac {1}{0.761}\)
D
\( \large \dfrac{1}{0.{761}}\cdot \dfrac{1}{{83}.0{3}}\)
Hint:
Number is way too small.
Question 4 Explanation: 
Topic: Analyze the relationships among proportions, constant rates, and linear functions (Objective 0022).
Question 5

Taxicab fares in Boston (Spring 2012) are $2.60 for the first \(\dfrac{1}{7}\) of a mile or less and $0.40 for each \(\dfrac{1}{7}\) of a mile after that.

Let d represent the distance a passenger travels in miles (with \(d>\dfrac{1}{7}\)). Which of the following expressions represents the total fare?

A
\( \large \$2.60+\$0.40d\)
Hint:
It's 40 cents for 1/7 of a mile, not per mile.
B
\( \large \$2.60+\$0.40\dfrac{d}{7}\)
Hint:
According to this equation, going 7 miles would cost $3; does that make sense?
C
\( \large \$2.20+\$2.80d\)
Hint:
You can think of the fare as $2.20 to enter the cab, and then $0.40 for each 1/7 of a mile, including the first 1/7 of a mile (or $2.80 per mile).

Alternatively, you pay $2.60 for the first 1/7 of a mile, and then $2.80 per mile for d-1/7 miles. The total is 2.60+2.80(d-1/7) = 2.60+ 2.80d -.40 = 2.20+2.80d.
D
\( \large \$2.60+\$2.80d\)
Hint:
Don't count the first 1/7 of a mile twice.
Question 5 Explanation: 
Topic: Identify variables and derive algebraic expressions that represent real-world situations (Objective 0020), and select the linear equation that best models a real-world situation (Objective 0022).
Question 6

Use the expression below to answer the question that follows.

                 \(\large \dfrac{\left( 155 \right)\times \left( 6,124 \right)}{977}\)

Which of the following is the best estimate of the expression above?

A

100

Hint:
6124/977 is approximately 6.
B

200

Hint:
6124/977 is approximately 6.
C

1,000

Hint:
6124/977 is approximately 6. 155 is approximately 150, and \( 6 \times 150 = 3 \times 300 = 900\), so this answer is closest.
D

2,000

Hint:
6124/977 is approximately 6.
Question 6 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016).
Question 7

A teacher has a list of all the countries in the world and their populations in March 2012.  She is going to have her students use technology to compute the mean and median of the numbers on the list.   Which of the following statements is true?

A

The teacher can be sure that the mean and median will be the same without doing any computation.

Hint:
Does this make sense? How likely is it that the mean and median of any large data set will be the same?
B

The teacher can be sure that the mean is bigger than the median without doing any computation.

Hint:
This is a skewed distribution, and very large countries like China and India contribute huge numbers to the mean, but are counted the same as small countries like Luxembourg in the median (the same thing happens w/data on salaries, where a few very high income people tilt the mean -- that's why such data is usually reported as medians).
C

The teacher can be sure that the median is bigger than the mean without doing any computation.

Hint:
Think about a set of numbers like 1, 2, 3, 4, 10,000 -- how do the mean/median compare? How might that relate to countries of the world?
D

There is no way for the teacher to know the relative size of the mean and median without computing them.

Hint:
Knowing the shape of the distribution of populations does give us enough info to know the relative size of the mean and median, even without computing them.
Question 7 Explanation: 
Topic: Use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 8

Which property is not shared by all rhombi?

A

4 congruent sides

Hint:
The most common definition of a rhombus is a quadrilateral with 4 congruent sides.
B

A center of rotational symmetry

Hint:
The diagonal of a rhombus separates it into two congruent isosceles triangles. The center of this line is a center of 180 degree rotational symmetry that switches the triangles.
C

4 congruent angles

Hint:
Unless the rhombus is a square, it does not have 4 congruent angles.
D

2 sets of parallel sides

Hint:
All rhombi are parallelograms.
Question 8 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles, and symmetry (Objective 0024).
Question 9

The column below consists of two cubes and a cylinder.  The cylinder has diameter y, which is also the length of the sides of each cube.   The total height of the column is 5y.  Which of the formulas below gives the volume of the column?

 
A
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{4}\)
Hint:
The cubes each have volume \(y^3\). The cylinder has radius \(\dfrac{y}{2}\) and height \(3y\). The volume of a cylinder is \(\pi r^2 h=\pi ({\dfrac{y}{2}})^2(3y)=\dfrac{3\pi {{y}^{3}}}{4}\). Note that the volume of a cylinder is analogous to that of a prism -- area of the base times height.
B
\( \large 2{{y}^{3}}+3\pi {{y}^{3}}\)
Hint:
y is the diameter of the circle, not the radius.
C
\( \large {{y}^{3}}+5\pi {{y}^{3}}\)
Hint:
Don't forget to count both cubes.
D
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{8}\)
Hint:
Make sure you know how to find the volume of a cylinder.
Question 9 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
Question 10

A family has four children.  What is the probability that two children are girls and two are boys?  Assume the the probability of having a boy (or a girl) is 50%.

A
\( \large \dfrac{1}{2}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
B
\( \large \dfrac{1}{4}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
C
\( \large \dfrac{1}{5}\)
Hint:
Some configurations are more probable than others -- i.e. it's more likely to have two boys and two girls than all boys. Be sure you are weighting properly.
D
\( \large \dfrac{3}{8}\)
Hint:
There are two possibilities for each child, so there are \(2 \times 2 \times 2 \times 2 =16\) different configurations, e.g. from oldest to youngest BBBG, BGGB, GBBB, etc. Of these configurations, there are 6 with two boys and two girls (this is the combination \(_{4}C_{2}\) or "4 choose 2"): BBGG, BGBG, BGGB, GGBB, GBGB, and GBBG. Thus the probability is 6/16=3/8.
Question 10 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Question 11

Which of the graphs below represent functions?

I. II. III. IV.   
A

I and IV only.

Hint:
There are vertical lines that go through 2 points in IV .
B

I and III only.

Hint:
Even though III is not continuous, it's still a function (assuming that vertical lines between the "steps" do not go through 2 points).
C

II and III only.

Hint:
Learn about the vertical line test.
D

I, II, and IV only.

Hint:
There are vertical lines that go through 2 points in II.
Question 11 Explanation: 
Understand the definition of function and various representations of functions (e.g., input/output machines, tables, graphs, mapping diagrams, formulas). (Objective 0021).
Question 12

How many factors does 80 have?

A
\( \large8\)
Hint:
Don't forget 1 and 80.
B
\( \large9\)
Hint:
Only perfect squares have an odd number of factors -- otherwise factors come in pairs.
C
\( \large10\)
Hint:
1,2,4,5,8,10,16,20,40,80
D
\( \large12\)
Hint:
Did you count a number twice? Include a number that isn't a factor?
Question 12 Explanation: 
Topic: Understand and apply principles of number theory (Objective 0018).
Question 13

Some children explored the diagonals in 2 x 2 squares on pages of a calendar (where all four squares have numbers in them).  They conjectured that the sum of the diagonals is always equal; in the example below, 8+16=9+15.

 

Which of the equations below could best be used to explain why the children's conjecture is correct?

A
\( \large 8x+16x=9x+15x\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
B
\( \large x+(x+2)=(x+1)+(x+1)\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
C
\( \large x+(x+8)=(x+1)+(x+7)\)
Hint:
x is the number in the top left square, x+8 is one below and to the right, x+1 is to the right of x, and x+7 is below x.
D
\( \large x+8+16=x+9+15\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
Question 13 Explanation: 
Topic: Recognize and apply the concepts of variable, equality, and equation to express relationships algebraically (Objective 0020).
Question 14

Which of the following is equivalent to \(  \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}?\)

A
\( \large \dfrac{7}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
B
\( \large \dfrac{1}{2}\)
Hint:
Addition and subtraction are of equal priority in the order of operations -- do them left to right.
C
\( \large \dfrac{3}{4}\)
Hint:
\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}\)=\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}+-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}\)
D
\( \large \dfrac{3}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
Question 14 Explanation: 
Topic: Operations on Fractions, Order of Operations (Objective 0019).
Question 15

Which of the numbers below is not equivalent to 4%?

A
\( \large \dfrac{1}{25}\)
Hint:
1/25=4/100, so this is equal to 4% (be sure you read the question correctly).
B
\( \large \dfrac{4}{100}\)
Hint:
4/100=4% (be sure you read the question correctly).
C
\( \large 0.4\)
Hint:
0.4=40% so this is not equal to 4%
D
\( \large 0.04\)
Hint:
0.04=4/100, so this is equal to 4% (be sure you read the question correctly).
Question 15 Explanation: 
Converting between fractions, decimals, and percents (Objective 0017).
Question 16

The histogram below shows the number of pairs of footware owned by a group of college students.

Which of the following statements can be inferred from the graph above?

A

The median number of pairs of footware owned is between 50 and 60 pairs.

Hint:
The same number of data points are less than the median as are greater than the median -- but on this histogram, clearly more than half the students own less than 50 pairs of shoes, so the median is less than 50.
B

The mode of the number of pairs of footware owned is 20.

Hint:
The mode is the most common number of pairs of footwear owned. We can't tell it from this histogram because each bar represents 10 different numbers-- perhaps 8 students each own each number from 10 to 19, but 40 students own exactly 6 pairs of shoes.... or perhaps not....
C

The mean number of pairs of footware owned is less than the median number of pairs of footware owned.

Hint:
This is a right skewed distribution, and so the mean is bigger than the median -- the few large values on the right pull up the mean, but have little effect on the median.
D

The median number of pairs of footware owned is between 10 and 20.

Hint:
There are approximately 230 students represented in this survey, and the 41st through 120th lowest values are between 10 and 20 -- thus the middle value is in that range.
Question 16 Explanation: 
Topics: Analyze and interpret various graphic and data representations, and use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 17

The table below gives the result of a survey at a college, asking students whether they were residents or commuters:

Based on the above data, what is the probability that a randomly chosen commuter student is a junior or a senior?

 
A
\( \large \dfrac{34}{43}\)
B
\( \large \dfrac{34}{71}\)
Hint:
This is the probability that a randomly chosen junior or senior is a commuter student.
C
\( \large \dfrac{34}{147}\)
Hint:
This is the probability that a randomly chosen student is a junior or senior who is a commuter.
D
\( \large \dfrac{71}{147}\)
Hint:
This is the probability that a randomly chosen student is a junior or a senior.
Question 17 Explanation: 
Topic: Recognize and apply the concept of conditional probability (Objective 0026).
Question 18

What is the greatest common factor of 540 and 216?

A
\( \large{{2}^{2}}\cdot {{3}^{3}}\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then take the smaller power for each prime that is a factor of both numbers.
B
\( \large2\cdot 3\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
C
\( \large{{2}^{3}}\cdot {{3}^{3}}\)
Hint:
\(2^3 = 8\) is not a factor of 540.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
Question 18 Explanation: 
Topic: Find the greatest common factor of a set of numbers (Objective 0018).
Question 19

Which of the following is the equation of a linear function?

A
\( \large y={{x}^{2}}+2x+7\)
Hint:
This is a quadratic function.
B
\( \large y={{2}^{x}}\)
Hint:
This is an exponential function.
C
\( \large y=\dfrac{15}{x}\)
Hint:
This is an inverse function.
D
\( \large y=x+(x+4)\)
Hint:
This is a linear function, y=2x+4, it's graph is a straight line with slope 2 and y-intercept 4.
Question 19 Explanation: 
Topic: Distinguish between linear and nonlinear functions (Objective 0022).
Question 20

The first histogram shows the average life expectancies for women in different countries in Africa in 1998; the second histogram gives similar data for Europe:

  

How much bigger is the range of the data for Africa than the range of the data for Europe?

A

0 years

Hint:
Range is the maximum life expectancy minus the minimum life expectancy.
B

12 years

Hint:
Are you subtracting frequencies? Range is about values of the data, not frequency.
C

18 years

Hint:
It's a little hard to read the graph, but it doesn't matter if you're consistent. It looks like the range for Africa is 80-38= 42 years and for Europe is 88-64 = 24; 42-24=18.
D

42 years

Hint:
Read the question more carefully.
Question 20 Explanation: 
Topic: Compare different data sets (Objective 0025).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.