Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

A teacher has a list of all the countries in the world and their populations in March 2012.  She is going to have her students use technology to compute the mean and median of the numbers on the list.   Which of the following statements is true?

A

The teacher can be sure that the mean and median will be the same without doing any computation.

Hint:
Does this make sense? How likely is it that the mean and median of any large data set will be the same?
B

The teacher can be sure that the mean is bigger than the median without doing any computation.

Hint:
This is a skewed distribution, and very large countries like China and India contribute huge numbers to the mean, but are counted the same as small countries like Luxembourg in the median (the same thing happens w/data on salaries, where a few very high income people tilt the mean -- that's why such data is usually reported as medians).
C

The teacher can be sure that the median is bigger than the mean without doing any computation.

Hint:
Think about a set of numbers like 1, 2, 3, 4, 10,000 -- how do the mean/median compare? How might that relate to countries of the world?
D

There is no way for the teacher to know the relative size of the mean and median without computing them.

Hint:
Knowing the shape of the distribution of populations does give us enough info to know the relative size of the mean and median, even without computing them.
Question 1 Explanation: 
Topic: Use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 2

Below is a portion of a number line:

 Point B is halfway between two tick marks.  What number is represented by Point B?

 
A
\( \large 0.645\)
Hint:
That point is marked on the line, to the right.
B
\( \large 0.6421\)
Hint:
That point is to the left of point B.
C
\( \large 0.6422\)
Hint:
That point is to the left of point B.
D
\( \large 0.6425\)
Question 2 Explanation: 
Topic: Using Number Lines (Objective 0017)
Question 3

Which of the following is equivalent to

\( \large A-B+C\div D\times E\)?

A
\( \large A-B-\dfrac{C}{DE} \)
Hint:
In the order of operations, multiplication and division have the same priority, so do them left to right; same with addition and subtraction.
B
\( \large A-B+\dfrac{CE}{D}\)
Hint:
In practice, you're better off using parentheses than writing an expression like the one in the question. The PEMDAS acronym that many people memorize is misleading. Multiplication and division have equal priority and are done left to right. They have higher priority than addition and subtraction. Addition and subtraction also have equal priority and are done left to right.
C
\( \large \dfrac{AE-BE+CE}{D}\)
Hint:
Use order of operations, don't just compute left to right.
D
\( \large A-B+\dfrac{C}{DE}\)
Hint:
In the order of operations, multiplication and division have the same priority, so do them left to right
Question 3 Explanation: 
Topic: Justify algebraic manipulations by application of the properties of order of operations (Objective 0020).
Question 4

Here is a mental math strategy for computing 26 x 16:

Step 1: 100 x 16 = 1600

Step 2: 25 x 16 = 1600 ÷· 4 = 400

Step 3: 26 x 16 = 400 + 16 = 416

Which property best justifies Step 3 in this strategy?

A

Commutative Property.

Hint:
For addition, the commutative property is \(a+b=b+a\) and for multiplication it's \( a \times b = b \times a\).
B

Associative Property.

Hint:
For addition, the associative property is \((a+b)+c=a+(b+c)\) and for multiplication it's \((a \times b) \times c=a \times (b \times c)\)
C

Identity Property.

Hint:
0 is the additive identity, because \( a+0=a\) and 1 is the multiplicative identity because \(a \times 1=a\). The phrase "identity property" is not standard.
D

Distributive Property.

Hint:
\( (25+1) \times 16 = 25 \times 16 + 1 \times 16 \). This is an example of the distributive property of multiplication over addition.
Question 4 Explanation: 
Topic: Analyze and justify mental math techniques, by applying arithmetic properties such as commutative, distributive, and associative (Objective 0019). Note that it's hard to write a question like this as a multiple choice question -- worthwhile to understand why the other steps work too.
Question 5

Which of the following values of x satisfies the inequality \( \large \left| {{(x+2)}^{3}} \right|<3?\)

A
\( \large x=-3\)
Hint:
\( \left| {{(-3+2)}^{3}} \right|\)=\( \left | {(-1)}^3 \right | \)=\( \left | -1 \right |=1 \) .
B
\( \large x=0\)
Hint:
\( \left| {{(0+2)}^{3}} \right|\)=\( \left | {2}^3 \right | \)=\( \left | 8 \right | \) =\( 8\)
C
\( \large x=-4\)
Hint:
\( \left| {{(-4+2)}^{3}} \right|\)=\( \left | {(-2)}^3 \right | \)=\( \left | -8 \right | \) =\( 8\)
D
\( \large x=1\)
Hint:
\( \left| {{(1+2)}^{3}} \right|\)=\( \left | {3}^3 \right | \)=\( \left | 27 \right | \) = \(27\)
Question 5 Explanation: 
Topics: Laws of exponents, order of operations, interpret absolute value (Objective 0019).
Question 6

What is the perimeter of a right triangle with legs of lengths x and 2x?

A
\( \large 6x\)
Hint:
Use the Pythagorean Theorem.
B
\( \large 3x+5{{x}^{2}}\)
Hint:
Don't forget to take square roots when you use the Pythagorean Theorem.
C
\( \large 3x+\sqrt{5}{{x}^{2}}\)
Hint:
\(\sqrt {5 x^2}\) is not \(\sqrt {5}x^2\).
D
\( \large 3x+\sqrt{5}{{x}^{{}}}\)
Hint:
To find the hypotenuse, h, use the Pythagorean Theorem: \(x^2+(2x)^2=h^2.\) \(5x^2=h^2,h=\sqrt{5}x\). The perimeter is this plus x plus 2x.
Question 6 Explanation: 
Topic: Recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 7

The "houses" below are made of toothpicks and gum drops.

How many toothpicks are there in a row of 53 houses?

A

212

Hint:
Can the number of toothpicks be even?
B

213

Hint:
One way to see this is that every new "house" adds 4 toothpicks to the leftmost vertical toothpick -- so the total number is 1 plus 4 times the number of "houses." There are many other ways to look at the problem too.
C

217

Hint:
Try your strategy with a smaller number of "houses" so you can count and find your mistake.
D

265

Hint:
Remember that the "houses" overlap some walls.
Question 7 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic). (Objective 0021).
Question 8

A publisher prints a series of books with covers made of identical material and using the same thickness of paper for each page.  The covers of the book together are 0.4 cm thick, and 125 pieces of the paper used together are 1 cm thick.

The publisher uses a linear function to determine the total thickness, T(n) of a book made with n sheets of paper.   What are the slope and intercept of T(n)?

A

Intercept = 0.4 cm, Slope = 125 cm/page

Hint:
This would mean that each page of the book was 125 cm thick.
B

Intercept =0.4 cm, Slope = \(\dfrac{1}{125}\)cm/page

Hint:
The intercept is how thick the book would be with no pages in it. The slope is how much 1 extra page adds to the thickness of the book.
C

Intercept = 125 cm, Slope = 0.4 cm

Hint:
This would mean that with no pages in the book, it would be 125 cm thick.
D

Intercept = \(\dfrac{1}{125}\)cm, Slope = 0.4 pages/cm

Hint:
This would mean that each new page of the book made it 0.4 cm thicker.
Question 8 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 9

Here is a number trick:

 1) Pick a whole number

 2) Double your number.

 3) Add 20 to the above result.

 4) Multiply the above by 5

 5) Subtract 100

 6) Divide by 10

The result is always the number that you started with! Suppose you start by picking N. Which of the equations below best demonstrates that the result after Step 6 is also N?

A
\( \large N*2+20*5-100\div 10=N\)
Hint:
Use parentheses or else order of operations is off.
B
\( \large \left( \left( 2*N+20 \right)*5-100 \right)\div 10=N\)
C
\( \large \left( N+N+20 \right)*5-100\div 10=N\)
Hint:
With this answer you would subtract 10, instead of subtracting 100 and then dividing by 10.
D
\( \large \left( \left( \left( N\div 10 \right)-100 \right)*5+20 \right)*2=N\)
Hint:
This answer is quite backwards.
Question 9 Explanation: 
Topic: Recognize and apply the concepts of variable, function, equality, and equation to express relationships algebraically (Objective 0020).
Question 10

How many lines of reflective symmetry and how many centers of rotational symmetry does the parallelogram depicted below have?

 
A

4 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
B

2 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
C

0 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
The intersection of the diagonals is a center of rotational symmetry. There are no lines of reflective symmetry, although many people get confused about this fact (best to play with hands on examples to get a feel). Just fyi, the letter S also has rotational, but not reflective symmetry, and it's one that kids often write backwards.
D

2 lines of reflective symmetry, 0 centers of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper. Trace onto another sheet of paper. See if there's a way to rotate the cut out shape (less than a complete turn) so that it fits within the outlines again.
Question 10 Explanation: 
Topic: Analyze geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry (Objective 0024).
Question 11

What set of transformations will transform the leftmost image into the rightmost image?

 
A

A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.

Hint:
Part of the figure would move below the x-axis with these transformations.
B

A translation 3 units up, followed by a reflection about the line y=x.

Hint:
See what happens to the point (5,1) under this set of transformations.
C

A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up.

D

A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.

Hint:
See what happens to the point (3,3) under this set of transformations.
Question 11 Explanation: 
Topic:Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations) (Objective 0024).
Question 12

What is the mathematical name of the three-dimensional polyhedron depicted below?

A

Tetrahedron

Hint:
All the faces of a tetrahedron are triangles.
B

Triangular Prism

Hint:
A prism has two congruent, parallel bases, connected by parallelograms (since this is a right prism, the parallelograms are rectangles).
C

Triangular Pyramid

Hint:
A pyramid has one base, not two.
D

Trigon

Hint:
A trigon is a triangle (this is not a common term).
Question 12 Explanation: 
Topic: Classify and analyze three-dimensional figures using attributes of faces, edges, and vertices (Objective 0024).
Question 13

Below are front, side, and top views of a three-dimensional solid.

Which of the following could be the solid shown above?

A

A sphere

Hint:
All views would be circles.
B

A cylinder

C

A cone

Hint:
Two views would be triangles, not rectangles.
D

A pyramid

Hint:
How would one view be a circle?
Question 13 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 14

The speed of sound in dry air at 68 degrees F is 343.2 meters per second.  Which of the expressions below could be used to compute the number of kilometers that a sound wave travels in 10 minutes (in dry air at 68 degrees F)?

A
\( \large 343.2\times 60\times 10\)
Hint:
In kilometers, not meters.
B
\( \large 343.2\times 60\times 10\times \dfrac{1}{1000}\)
Hint:
Units are meters/sec \(\times\) seconds/minute \(\times\) minutes \(\times\) kilometers/meter, and the answer is in kilometers.
C
\( \large 343.2\times \dfrac{1}{60}\times 10\)
Hint:
Include units and make sure answer is in kilometers.
D
\( \large 343.2\times \dfrac{1}{60}\times 10\times \dfrac{1}{1000}\)
Hint:
Include units and make sure answer is in kilometers.
Question 14 Explanation: 
Topic: Use unit conversions and dimensional analysis to solve measurement problems (Objective 0023).
Question 15

On a map the distance from Boston to Detroit is 6 cm, and these two cities are 702 miles away from each other. Assuming the scale of the map is the same throughout, which answer below is closest to the distance between Boston and San Francisco on the map, given that they are 2,708 miles away from each other?

A

21 cm

Hint:
How many miles would correspond to 24 cm on the map? Try adjusting from there.
B

22 cm

Hint:
How many miles would correspond to 24 cm on the map? Try adjusting from there.
C

23 cm

Hint:
One way to solve this without a calculator is to note that 4 groups of 6 cm is 2808 miles, which is 100 miles too much. Then 100 miles would be about 1/7 th of 6 cm, or about 1 cm less than 24 cm.
D

24 cm

Hint:
4 groups of 6 cm is over 2800 miles on the map, which is too much.
Question 15 Explanation: 
Topic: Apply proportional thinking to estimate quantities in real world situations (Objective 0019).
Question 16

The picture below represents a board with pegs on it, where the closest distance between two pegs is 1 cm.  What is the area of the pentagon shown?

A
\( \large 8\text{ c}{{\text{m}}^{2}} \)
Hint:
Don't just count the dots inside, that doesn't give the area. Try adding segments so that the slanted lines become the diagonals of rectangles.
B
\( \large 11\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
C
\( \large 11.5\text{ c}{{\text{m}}^{2}}\)
Hint:
An easy way to do this problem is to use Pick's Theorem (of course, it's better if you understand why Pick's theorem works): area = # pegs inside + half # pegs on the border - 1. In this case 8+9/2-1=11.5. A more appropriate strategy for elementary classrooms is to add segments; here's one way.

There are 20 1x1 squares enclosed, and the total area of the triangles that need to be subtracted is 8.5
D
\( \large 12.5\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
Question 16 Explanation: 
Topics: Calculate measurements and derive and use formulas for calculating the areas of geometric shapes and figures (Objective 0023).
Question 17

How many factors does 80 have?

A
\( \large8\)
Hint:
Don't forget 1 and 80.
B
\( \large9\)
Hint:
Only perfect squares have an odd number of factors -- otherwise factors come in pairs.
C
\( \large10\)
Hint:
1,2,4,5,8,10,16,20,40,80
D
\( \large12\)
Hint:
Did you count a number twice? Include a number that isn't a factor?
Question 17 Explanation: 
Topic: Understand and apply principles of number theory (Objective 0018).
Question 18

If two fair coins are flipped, what is the probability that one will come up heads and the other tails?

A
\( \large \dfrac{1}{4}\)
Hint:
Think of the coins as a penny and a dime, and list all possibilities.
B
\( \large \dfrac{1}{3} \)
Hint:
This is a very common misconception. There are three possible outcomes -- both heads, both tails, and one of each -- but they are not equally likely. Think of the coins as a penny and a dime, and list all possibilities.
C
\( \large \dfrac{1}{2}\)
Hint:
The possibilities are HH, HT, TH, TT, and all are equally likely. Two of the four have one of each coin, so the probability is 2/4=1/2.
D
\( \large \dfrac{3}{4}\)
Hint:
Think of the coins as a penny and a dime, and list all possibilities.
Question 18 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 19

The first histogram shows the average life expectancies for women in different countries in Africa in 1998; the second histogram gives similar data for Europe:

  

How much bigger is the range of the data for Africa than the range of the data for Europe?

A

0 years

Hint:
Range is the maximum life expectancy minus the minimum life expectancy.
B

12 years

Hint:
Are you subtracting frequencies? Range is about values of the data, not frequency.
C

18 years

Hint:
It's a little hard to read the graph, but it doesn't matter if you're consistent. It looks like the range for Africa is 80-38= 42 years and for Europe is 88-64 = 24; 42-24=18.
D

42 years

Hint:
Read the question more carefully.
Question 19 Explanation: 
Topic: Compare different data sets (Objective 0025).
Question 20

Below is a portion of a number line.

Point A is one-quarter of the distance from 0.26 to 0.28.  What number is represented by point A?

A
\( \large0.26\)
Hint:
Please reread the question.
B
\( \large0.2625\)
Hint:
This is one-quarter of the distance between 0.26 and 0.27, which is not what the question asked.
C
\( \large0.265\)
D
\( \large0.27\)
Hint:
Please read the question more carefully. This answer would be correct if Point A were halfway between the tick marks, but it's not.
Question 20 Explanation: 
Topic: Using number lines (Objective 0017)
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.