Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

Which of the lines depicted below is a graph of \( \large y=2x-5\)?

A

a

Hint:
The slope of line a is negative.
B

b

Hint:
Wrong slope and wrong intercept.
C

c

Hint:
The intercept of line c is positive.
D

d

Hint:
Slope is 2 -- for every increase of 1 in x, y increases by 2. Intercept is -5 -- the point (0,-5) is on the line.
Question 1 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 2

Below are four inputs and outputs for a function machine representing the function A:

Which of the following equations could also represent A  for the values shown?

A
\( \large A(n)=n+4\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= -1 would output 3, not 0 as the machine does.
B
\( \large A(n)=n+2\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 4, not 6 as the machine does.
C
\( \large A(n)=2n+2\)
Hint:
Simply plug in each of the four function machine input values, and see that the equation produces the correct output, e.g. A(2)=6, A(-1)=0, etc.
D
\( \large A(n)=2\left( n+2 \right)\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 8, not 6 as the machine does.
Question 2 Explanation: 
Topics: Understand various representations of functions, and translate among different representations of functional relationships (Objective 0021).
Question 3

Which of the following is an irrational number?

A
\( \large \sqrt[3]{8}\)
Hint:
This answer is the cube root of 8. Since 2 x 2 x 2 =8, this is equal to 2, which is rational because 2 = 2/1.
B
\( \large \sqrt{8}\)
Hint:
It is not trivial to prove that this is irrational, but you can get this answer by eliminating the other choices.
C
\( \large \dfrac{1}{8}\)
Hint:
1/8 is the RATIO of two integers, so it is rational.
D
\( \large -8\)
Hint:
Negative integers are also rational, -8 = -8/1, a ratio of integers.
Question 3 Explanation: 
Topic: Identifying rational and irrational numbers (Objective 0016).
Question 4

Use the table below to answer the question that follows:

Each number in the table above represents a value W that is determined by the values of x and y.  For example, when x=3 and y=1, W=5.  What is the value of W when x=9 and y=14?  Assume that the patterns in the table continue as shown.

A
\( \large W=-5\)
Hint:
When y is even, W is even.
B
\( \large W=4\)
Hint:
Note that when x increases by 1, W increases by 2, and when y increases by 1, W decreases by 1. At x=y=0, W=0, so at x=9, y=14, W has increased by \(9 \times 2\) and decreased by 14, or W=18-14=4.
C
\( \large W=6\)
Hint:
Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0.
D
\( \large W=32\)
Hint:
Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0.
Question 4 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic) (Objective 0021)
Question 5

If two fair coins are flipped, what is the probability that one will come up heads and the other tails?

A
\( \large \dfrac{1}{4}\)
Hint:
Think of the coins as a penny and a dime, and list all possibilities.
B
\( \large \dfrac{1}{3} \)
Hint:
This is a very common misconception. There are three possible outcomes -- both heads, both tails, and one of each -- but they are not equally likely. Think of the coins as a penny and a dime, and list all possibilities.
C
\( \large \dfrac{1}{2}\)
Hint:
The possibilities are HH, HT, TH, TT, and all are equally likely. Two of the four have one of each coin, so the probability is 2/4=1/2.
D
\( \large \dfrac{3}{4}\)
Hint:
Think of the coins as a penny and a dime, and list all possibilities.
Question 5 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 6

How many factors does 80 have?

A
\( \large8\)
Hint:
Don't forget 1 and 80.
B
\( \large9\)
Hint:
Only perfect squares have an odd number of factors -- otherwise factors come in pairs.
C
\( \large10\)
Hint:
1,2,4,5,8,10,16,20,40,80
D
\( \large12\)
Hint:
Did you count a number twice? Include a number that isn't a factor?
Question 6 Explanation: 
Topic: Understand and apply principles of number theory (Objective 0018).
Question 7

Use the graph below to answer the question that follows.

If the polygon shown above is reflected about the y axis and then rotated 90 degrees clockwise about the origin, which of the following graphs is the result?

A
Hint:
Try following the point (1,4) to see where it goes after each transformation.
B
C
Hint:
Make sure you're reflecting in the correct axis.
D
Hint:
Make sure you're rotating the correct direction.
Question 7 Explanation: 
Topic: Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry, similarity, and congruence; and use these concepts to solve problems (Objective 0024).
Question 8

If  x  is an integer, which of the following must also be an integer?

A
\( \large \dfrac{x}{2}\)
Hint:
If x is odd, then \( \dfrac{x}{2} \) is not an integer, e.g. 3/2 = 1.5.
B
\( \large \dfrac{2}{x}\)
Hint:
Only an integer if x = -2, -1, 1, or 2.
C
\( \large-x\)
Hint:
-1 times any integer is still an integer.
D
\(\large\sqrt{x}\)
Hint:
Usually not an integer, e.g. \( \sqrt{2} \approx 1.414 \).
Question 8 Explanation: 
Topic: Integers (Objective 0016)
Question 9

Here is a number trick:

 1) Pick a whole number

 2) Double your number.

 3) Add 20 to the above result.

 4) Multiply the above by 5

 5) Subtract 100

 6) Divide by 10

The result is always the number that you started with! Suppose you start by picking N. Which of the equations below best demonstrates that the result after Step 6 is also N?

A
\( \large N*2+20*5-100\div 10=N\)
Hint:
Use parentheses or else order of operations is off.
B
\( \large \left( \left( 2*N+20 \right)*5-100 \right)\div 10=N\)
C
\( \large \left( N+N+20 \right)*5-100\div 10=N\)
Hint:
With this answer you would subtract 10, instead of subtracting 100 and then dividing by 10.
D
\( \large \left( \left( \left( N\div 10 \right)-100 \right)*5+20 \right)*2=N\)
Hint:
This answer is quite backwards.
Question 9 Explanation: 
Topic: Recognize and apply the concepts of variable, function, equality, and equation to express relationships algebraically (Objective 0020).
Question 10

Which of the graphs below represent functions?

I. II. III. IV.   
A

I and IV only.

Hint:
There are vertical lines that go through 2 points in IV .
B

I and III only.

Hint:
Even though III is not continuous, it's still a function (assuming that vertical lines between the "steps" do not go through 2 points).
C

II and III only.

Hint:
Learn about the vertical line test.
D

I, II, and IV only.

Hint:
There are vertical lines that go through 2 points in II.
Question 10 Explanation: 
Understand the definition of function and various representations of functions (e.g., input/output machines, tables, graphs, mapping diagrams, formulas). (Objective 0021).
Question 11

Elena is going to use a calculator to check whether or not 267 is prime. She will pick certain divisors, and then find 267 divided by each, and see if she gets a whole number. If she never gets a whole number, then she's found a prime. Which numbers does Elena NEED to check before she can stop checking and be sure she has a prime?

A

All natural numbers from 2 to 266.

Hint:
She only needs to check primes -- checking the prime factors of any composite is enough to look for divisors. As a test taking strategy, the other three choices involve primes, so worth thinking about.
B

All primes from 2 to 266 .

Hint:
Remember, factors come in pairs (except for square root factors), so she would first find the smaller of the pair and wouldn't need to check the larger.
C

All primes from 2 to 133 .

Hint:
She doesn't need to check this high. Factors come in pairs, and something over 100 is going to be paired with something less than 3, so she will find that earlier.
D

All primes from \( \large 2\) to \( \large \sqrt{267}\).

Hint:
\(\sqrt{267} \times \sqrt{267}=267\). Any other pair of factors will have one factor less than \( \sqrt{267}\) and one greater, so she only needs to check up to \( \sqrt{267}\).
Question 11 Explanation: 
Topic: Identify prime and composite numbers (Objective 0018).
Question 12

Use the samples of a student's work below to answer the question that follows:

\( \large \dfrac{2}{3}\times \dfrac{3}{4}=\dfrac{4\times 2}{3\times 3}=\dfrac{8}{9}\) \( \large \dfrac{2}{5}\times \dfrac{7}{7}=\dfrac{7\times 2}{5\times 7}=\dfrac{2}{5}\) \( \large \dfrac{7}{6}\times \dfrac{3}{4}=\dfrac{4\times 7}{6\times 3}=\dfrac{28}{18}=\dfrac{14}{9}\)

Which of the following best describes the mathematical validity of the algorithm the student is using?

A

It is not valid. It never produces the correct answer.

Hint:
In the middle example,the answer is correct.
B

It is not valid. It produces the correct answer in a few special cases, but it‘s still not a valid algorithm.

Hint:
Note that this algorithm gives a/b divided by c/d, not a/b x c/d, but some students confuse multiplication and cross-multiplication. If a=0 or if c/d =1, division and multiplication give the same answer.
C

It is valid if the rational numbers in the multiplication problem are in lowest terms.

Hint:
Lowest terms is irrelevant.
D

It is valid for all rational numbers.

Hint:
Can't be correct as the first and last examples have the wrong answers.
Question 12 Explanation: 
Topic: Analyze Non-Standard Computational Algorithms (Objective 0019).
Question 13

P is a prime number that divides 240.  Which of the following must be true?

A

P divides 30

Hint:
2, 3, and 5 are the prime factors of 240, and all divide 30.
B

P divides 48

Hint:
P=5 doesn't work.
C

P divides 75

Hint:
P=2 doesn't work.
D

P divides 80

Hint:
P=3 doesn't work.
Question 13 Explanation: 
Topic: Find the prime factorization of a number and recognize its uses (Objective 0018).
Question 14

Below is a pictorial representation of \(2\dfrac{1}{2}\div \dfrac{2}{3}\):

Which of the following is the best description of how to find the quotient from the picture?

A

The quotient is \(3\dfrac{3}{4}\). There are 3 whole blocks each representing \(\dfrac{2}{3}\) and a partial block composed of 3 small rectangles. The 3 small rectangles represent \(\dfrac{3}{4}\) of \(\dfrac{2}{3}\).

B

The quotient is \(3\dfrac{1}{2}\). There are 3 whole blocks each representing \(\dfrac{2}{3}\) and a partial block composed of 3 small rectangles. The 3 small rectangles represent \(\dfrac{3}{6}\) of a whole, or \(\dfrac{1}{2}\).

Hint:
We are counting how many 2/3's are in
2 1/2: the unit becomes 2/3, not 1.
C

The quotient is \(\dfrac{4}{15}\). There are four whole blocks separated into a total of 15 small rectangles.

Hint:
This explanation doesn't make much sense. Probably you are doing "invert and multiply," but inverting the wrong thing.
D

This picture cannot be used to find the quotient because it does not show how to separate \(2\dfrac{1}{2}\) into equal sized groups.

Hint:
Study the measurement/quotative model of division. It's often very useful with fractions.
Question 14 Explanation: 
Topic: Recognize and analyze pictorial representations of number operations. (Objective 0019).
Question 15

Here are some statements:

I) 5 is an integer    II)\( -5 \)  is an integer    III) \(0\) is an integer

Which of the statements are true?

A

I only

B

I and II only

C

I and III only

D

I, II, and III

Hint:
The integers are ...-3, -2, -1, 0, 1, 2, 3, ....
Question 15 Explanation: 
Topic: Characteristics of Integers (Objective 0016)
Question 16

What is the perimeter of a right triangle with legs of lengths x and 2x?

A
\( \large 6x\)
Hint:
Use the Pythagorean Theorem.
B
\( \large 3x+5{{x}^{2}}\)
Hint:
Don't forget to take square roots when you use the Pythagorean Theorem.
C
\( \large 3x+\sqrt{5}{{x}^{2}}\)
Hint:
\(\sqrt {5 x^2}\) is not \(\sqrt {5}x^2\).
D
\( \large 3x+\sqrt{5}{{x}^{{}}}\)
Hint:
To find the hypotenuse, h, use the Pythagorean Theorem: \(x^2+(2x)^2=h^2.\) \(5x^2=h^2,h=\sqrt{5}x\). The perimeter is this plus x plus 2x.
Question 16 Explanation: 
Topic: Recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 17

Use the expression below to answer the question that follows.

      \( \large 3\times {{10}^{4}}+2.2\times {{10}^{2}}\)

Which of the following is closest to the expression above?

A

Five million

Hint:
Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values.
B

Fifty thousand

Hint:
Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values.
C

Three million

Hint:
Don't add the exponents.
D

Thirty thousand

Hint:
\( 3\times {{10}^{4}} = 30,000;\) the other term is much smaller and doesn't change the estimate.
Question 17 Explanation: 
Topics: Place value, scientific notation, estimation (Objective 0016)
Question 18

The histogram below shows the frequency of a class's scores on a 4 question quiz.

What was the mean score on the quiz?

A
\( \large 2.75\)
Hint:
There were 20 students who took the quiz. Total points earned: \(2 \times 1+6 \times 2+ 7\times 3+5 \times 4=55\), and 55/20 = 2.75.
B
\( \large 2\)
Hint:
How many students are there total? Did you count them all?
C
\( \large 3\)
Hint:
How many students are there total? Did you count them all? Be sure you're finding the mean, not the median or the mode.
D
\( \large 2.5\)
Hint:
How many students are there total? Did you count them all? Don't just take the mean of 1, 2, 3, 4 -- you have to weight them properly.
Question 18 Explanation: 
Topics: Analyze and interpret various graphic representations, and use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 19

The picture below represents a board with pegs on it, where the closest distance between two pegs is 1 cm.  What is the area of the pentagon shown?

A
\( \large 8\text{ c}{{\text{m}}^{2}} \)
Hint:
Don't just count the dots inside, that doesn't give the area. Try adding segments so that the slanted lines become the diagonals of rectangles.
B
\( \large 11\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
C
\( \large 11.5\text{ c}{{\text{m}}^{2}}\)
Hint:
An easy way to do this problem is to use Pick's Theorem (of course, it's better if you understand why Pick's theorem works): area = # pegs inside + half # pegs on the border - 1. In this case 8+9/2-1=11.5. A more appropriate strategy for elementary classrooms is to add segments; here's one way.

There are 20 1x1 squares enclosed, and the total area of the triangles that need to be subtracted is 8.5
D
\( \large 12.5\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
Question 19 Explanation: 
Topics: Calculate measurements and derive and use formulas for calculating the areas of geometric shapes and figures (Objective 0023).
Question 20

A map has a scale of 3 inches = 100 miles.  Cities A and B are 753 miles apart.  Let d be the distance between the two cities on the map.  Which of the following is not correct?

A
\( \large \dfrac{3}{100}=\dfrac{d}{753}\)
Hint:
Units on both side are inches/mile, and both numerators and denominators correspond -- this one is correct.
B
\( \large \dfrac{3}{100}=\dfrac{753}{d}\)
Hint:
Unit on the left is inches per mile, and on the right is miles per inch. The proportion is set up incorrectly (which is what we wanted). Another strategy is to notice that one of A or B has to be the answer because they cannot both be correct proportions. Then check that cross multiplying on A gives part D, so B is the one that is different from the other 3.
C
\( \large \dfrac{3}{d}=\dfrac{100}{753}\)
Hint:
Unitless on each side, as inches cancel on the left and miles on the right. Numerators correspond to the map, and denominators to the real life distances -- this one is correct.
D
\( \large 100d=3\cdot 753\)
Hint:
This is equivalent to part A.
Question 20 Explanation: 
Topic: Analyze the relationships among proportions, constant rates, and linear functions (Objective 0022).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 20 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.