Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

There are six gumballs in a bag — two red and four green.  Six children take turns picking a gumball out of the bag without looking.   They do not return any gumballs to the bag.  What is the probability that the first two children to pick from the bag pick the red gumballs?

A
\( \large \dfrac{1}{3}\)
Hint:
This is the probability that the first child picks a red gumball, but not that the first two children pick red gumballs.
B
\( \large \dfrac{1}{8}\)
Hint:
Are you adding things that you should be multiplying?
C
\( \large \dfrac{1}{9}\)
Hint:
This would be the probability if the gumballs were returned to the bag.
D
\( \large \dfrac{1}{15}\)
Hint:
The probability that the first child picks red is 2/6 = 1/3. Then there are 5 gumballs in the bag, one red, so the probability that the second child picks red is 1/5. Thus 1/5 of the time, after the first child picks red, the second does too, so the probability is 1/5 x 1/3 = 1/15.
Question 1 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 2

The chart below gives percentiles for the number of sit-ups that boys of various ages can do in 60 seconds (source , June 24, 2011)

 

Which of the following statements can be inferred from the above chart?

A

95% of 12 year old boys can do 56 sit-ups in 60 seconds.

Hint:
The 95th percentile means that 95% of scores are less than or equal to 56, and 5% are greater than or equal to 56.
B

At most 25% of 7 year old boys can do 19 or more sit-ups in 60 seconds.

Hint:
The 25th percentile means that 25% of scores are less than or equal to 19, and 75% are greater than or equal to 19.
C

Half of all 13 year old boys can do less than 41 sit-ups in 60 seconds and half can do more than 41 sit-ups in 60 seconds.

Hint:
Close, but not quite. There's no accounting for boys who can do exactly 41 sit ups. Look at these data: 10, 20, 41, 41, 41, 41, 50, 60, 90. The median is 41, but more than half can do 41 or more.
D

At least 75% of 16 year old boys can only do 51 or fewer sit-ups in 60 seconds.

Hint:
The "at least" is necessary due to duplicates. Suppose the data were 10, 20, 51, 51. The 75th percentile is 51, but 100% of the boys can only do 51 or fewer situps.
Question 2 Explanation: 
Topic: Analyze and interpret various graphic and nongraphic data representations (e.g., frequency distributions, percentiles) (Objective 0025).
Question 3

The pattern below consists of a row of black squares surrounded by white squares.

 How many white squares would surround a row of 157 black squares?

A

314

Hint:
Try your procedure on a smaller number that you can count to see where you made a mistake.
B

317

Hint:
Are there ever an odd number of white squares?
C

320

Hint:
One way to see this is that there are 6 tiles on the left and right ends, and the rest of the white tiles are twice the number of black tiles (there are many other ways to look at it too).
D

322

Hint:
Try your procedure on a smaller number that you can count to see where you made a mistake.
Question 3 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic) (Objective 0021).
Question 4

The least common multiple of 60 and N is 1260. Which of the following could be the prime factorization of N?

A
\( \large2\cdot 5\cdot 7\)
Hint:
1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM.
B
\( \large{{2}^{3}}\cdot {{3}^{2}}\cdot 5 \cdot 7\)
Hint:
1260 is not divisible by 8, so it isn't a multiple of this N.
C
\( \large3 \cdot 5 \cdot 7\)
Hint:
1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM.
D
\( \large{{3}^{2}}\cdot 5\cdot 7\)
Hint:
\(1260=2^2 \cdot 3^2 \cdot 5 \cdot 7\) and \(60=2^2 \cdot 3 \cdot 5\). In order for 1260 to be the LCM, N has to be a multiple of \(3^2\) and of 7 (because 60 is not a multiple of either of these). N also cannot introduce a factor that would require the LCM to be larger (as in choice b).
Question 4 Explanation: 
Topic: Least Common Multiple (Objective 0018)
Question 5

Which of the lists below is in order from least to greatest value?

A
\( \large \dfrac{1}{2},\quad \dfrac{1}{3},\quad \dfrac{1}{4},\quad \dfrac{1}{5}\)
Hint:
This is ordered from greatest to least.
B
\( \large \dfrac{1}{3},\quad \dfrac{2}{7},\quad \dfrac{3}{8},\quad \dfrac{4}{11}\)
Hint:
1/3 = 2/6 is bigger than 2/7.
C
\( \large \dfrac{1}{4},\quad \dfrac{2}{5},\quad \dfrac{2}{3},\quad \dfrac{4}{5}\)
Hint:
One way to look at this: 1/4 and 2/5 are both less than 1/2, and 2/3 and 4/5 are both greater than 1/2. 1/4 is 25% and 2/5 is 40%, so 2/5 is greater. The distance from 2/3 to 1 is 1/3 and from 4/5 to 1 is 1/5, and 1/5 is less than 1/3, so 4/5 is bigger.
D
\( \large \dfrac{7}{8},\quad \dfrac{6}{7},\quad \dfrac{5}{6},\quad \dfrac{4}{5}\)
Hint:
This is in order from greatest to least.
Question 5 Explanation: 
Topic: Ordering Fractions (Objective 0017)
Question 6

A map has a scale of 3 inches = 100 miles.  Cities A and B are 753 miles apart.  Let d be the distance between the two cities on the map.  Which of the following is not correct?

A
\( \large \dfrac{3}{100}=\dfrac{d}{753}\)
Hint:
Units on both side are inches/mile, and both numerators and denominators correspond -- this one is correct.
B
\( \large \dfrac{3}{100}=\dfrac{753}{d}\)
Hint:
Unit on the left is inches per mile, and on the right is miles per inch. The proportion is set up incorrectly (which is what we wanted). Another strategy is to notice that one of A or B has to be the answer because they cannot both be correct proportions. Then check that cross multiplying on A gives part D, so B is the one that is different from the other 3.
C
\( \large \dfrac{3}{d}=\dfrac{100}{753}\)
Hint:
Unitless on each side, as inches cancel on the left and miles on the right. Numerators correspond to the map, and denominators to the real life distances -- this one is correct.
D
\( \large 100d=3\cdot 753\)
Hint:
This is equivalent to part A.
Question 6 Explanation: 
Topic: Analyze the relationships among proportions, constant rates, and linear functions (Objective 0022).
Question 7

The picture below shows identical circles drawn on a piece of paper.  The rectangle represents an index card that is blocking your view of \( \dfrac{3}{5}\) of the circles on the paper.  How many circles are covered by the rectangle?

A

4

Hint:
The card blocks more than half of the circles, so this number is too small.
B

5

Hint:
The card blocks more than half of the circles, so this number is too small.
C

8

Hint:
The card blocks more than half of the circles, so this number is too small.
D

12

Hint:
2/5 of the circles or 8 circles are showing. Thus 4 circles represent 1/5 of the circles, and \(4 \times 5=20\) circles represent 5/5 or all the circles. Thus 12 circles are hidden.
Question 7 Explanation: 
Topic: Models of Fractions (Objective 0017)
Question 8

In each expression below  N represents a negative integer. Which expression could have a negative value?

A
\( \large {{N}^{2}}\)
Hint:
Squaring always gives a non-negative value.
B
\( \large 6-N\)
Hint:
A story problem for this expression is, if it was 6 degrees out at noon and N degrees out at sunrise, by how many degrees did the temperature rise by noon? Since N is negative, the answer to this question has to be positive, and more than 6.
C
\( \large -N\)
Hint:
If N is negative, then -N is positive
D
\( \large 6+N\)
Hint:
For example, if \(N=-10\), then \(6+N = -4\)
Question 8 Explanation: 
If you are stuck on a question like this, try a few examples to eliminate some choices and to help you understand what the question means. Topic: Characteristics of integers (Objective 0016).
Question 9

A sales companies pays its representatives $2 for each item sold, plus 40% of the price of the item.   The rest of the money that the representatives collect goes to the company.  All transactions are in cash, and all items cost $4 or more.   If the price of an item in dollars is p, which expression represents the amount of money the company collects when the item is sold?

A
\( \large \dfrac{3}{5}p-2\)
Hint:
The company gets 3/5=60% of the price, minus the $2 per item.
B
\( \large \dfrac{3}{5}\left( p-2 \right)\)
Hint:
This is sensible, but not what the problem states.
C
\( \large \dfrac{2}{5}p+2\)
Hint:
The company pays the extra $2; it doesn't collect it.
D
\( \large \dfrac{2}{5}p-2\)
Hint:
This has the company getting 2/5 = 40% of the price of each item, but that's what the representative gets.
Question 9 Explanation: 
Topic: Use algebra to solve word problems involving fractions, ratios, proportions, and percents (Objective 0020).
Question 10

What is the greatest common factor of 540 and 216?

A
\( \large{{2}^{2}}\cdot {{3}^{3}}\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then take the smaller power for each prime that is a factor of both numbers.
B
\( \large2\cdot 3\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
C
\( \large{{2}^{3}}\cdot {{3}^{3}}\)
Hint:
\(2^3 = 8\) is not a factor of 540.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
Question 10 Explanation: 
Topic: Find the greatest common factor of a set of numbers (Objective 0018).
Question 11

Which of the following nets will not fold into a cube?

A
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
B
C
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
D
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
Question 11 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 12

In the triangle below, \(\overline{AC}\cong \overline{AD}\cong \overline{DE}\) and \(m\angle CAD=100{}^\circ \).  What is \(m\angle DAE\)?

A
\( \large 20{}^\circ \)
Hint:
Angles ACD and ADC are congruent since they are base angles of an isosceles triangle. Since the angles of a triangle sum to 180, they sum to 80, and they are 40 deg each. Thus angle ADE is 140 deg, since it makes a straight line with angle ADC. Angles DAE and DEA are base angles of an isosceles triangle and thus congruent-- they sum to 40 deg, so are 20 deg each.
B
\( \large 25{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
C
\( \large 30{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
D
\( \large 40{}^\circ \)
Hint:
Make sure you're calculating the correct angle.
Question 12 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles, including real-world applications. (Objective 0024).
Question 13

Which of the numbers below is the decimal equivalent of \( \dfrac{3}{8}?\)

A

0.38

Hint:
If you are just writing the numerator next to the denominator then your technique is way off, but by coincidence your answer is close; try with 2/3 and 0.23 is nowhere near correct.
B

0.125

Hint:
This is 1/8, not 3/8.
C

0.375

D

0.83

Hint:
3/8 is less than a half, and 0.83 is more than a half, so they can't be equal.
Question 13 Explanation: 
Topic: Converting between fractions and decimals (Objective 0017)
Question 14

The letters A, B, and C represent digits (possibly equal) in the twelve digit number x=111,111,111,ABC.  For which values of A, B, and C is x divisible by 40?

A
\( \large A = 3, B = 2, C=0\)
Hint:
Note that it doesn't matter what the first 9 digits are, since 1000 is divisible by 40, so DEF,GHI,JKL,000 is divisible by 40 - we need to check the last 3.
B
\( \large A = 0, B = 0, C=4\)
Hint:
Not divisible by 10, since it doesn't end in 0.
C
\( \large A = 4, B = 2, C=0\)
Hint:
Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 420 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 18, which is not divisible by 8.
D
\( \large A =1, B=0, C=0\)
Hint:
Divisible by 10 and by 4, but not by 40, as it's not divisible by 8. Look at 40 as the product of powers of primes -- 8 x 5, and check each. To check 8, either check whether 100 is divisible by 8, or take ones place + twice tens place + 4 * hundreds place = 4, which is not divisible by 8.
Question 14 Explanation: 
Topic: Understand divisibility rules and why they work (Objective 018).
Question 15

The expression \( \large{{8}^{3}}\cdot {{2}^{-10}}\) is equal to which of the following?

A
\( \large 2\)
Hint:
Write \(8^3\) as a power of 2.
B
\( \large \dfrac{1}{2}\)
Hint:
\(8^3 \cdot {2}^{-10}={(2^3)}^3 \cdot {2}^{-10}\) =\(2^9 \cdot {2}^{-10} =2^{-1}\)
C
\( \large 16\)
Hint:
Write \(8^3\) as a power of 2.
D
\( \large \dfrac{1}{16}\)
Hint:
Write \(8^3\) as a power of 2.
Question 15 Explanation: 
Topic: Laws of Exponents (Objective 0019).
Question 16

Use the samples of a student's work below to answer the question that follows:

\( \large \dfrac{2}{3}\times \dfrac{3}{4}=\dfrac{4\times 2}{3\times 3}=\dfrac{8}{9}\) \( \large \dfrac{2}{5}\times \dfrac{7}{7}=\dfrac{7\times 2}{5\times 7}=\dfrac{2}{5}\) \( \large \dfrac{7}{6}\times \dfrac{3}{4}=\dfrac{4\times 7}{6\times 3}=\dfrac{28}{18}=\dfrac{14}{9}\)

Which of the following best describes the mathematical validity of the algorithm the student is using?

A

It is not valid. It never produces the correct answer.

Hint:
In the middle example,the answer is correct.
B

It is not valid. It produces the correct answer in a few special cases, but it‘s still not a valid algorithm.

Hint:
Note that this algorithm gives a/b divided by c/d, not a/b x c/d, but some students confuse multiplication and cross-multiplication. If a=0 or if c/d =1, division and multiplication give the same answer.
C

It is valid if the rational numbers in the multiplication problem are in lowest terms.

Hint:
Lowest terms is irrelevant.
D

It is valid for all rational numbers.

Hint:
Can't be correct as the first and last examples have the wrong answers.
Question 16 Explanation: 
Topic: Analyze Non-Standard Computational Algorithms (Objective 0019).
Question 17

Which of the lines depicted below is a graph of \( \large y=2x-5\)?

A

a

Hint:
The slope of line a is negative.
B

b

Hint:
Wrong slope and wrong intercept.
C

c

Hint:
The intercept of line c is positive.
D

d

Hint:
Slope is 2 -- for every increase of 1 in x, y increases by 2. Intercept is -5 -- the point (0,-5) is on the line.
Question 17 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 18

Which of the following is not possible?

A

An equiangular triangle that is not equilateral.

Hint:
The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral.
B

An equiangular quadrilateral that is not equilateral.

Hint:
A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length).
C

An equilateral quadrilateral that is not equiangular.

Hint:
This rhombus has equal sides, but it doesn't have equal angles:
D

An equiangular hexagon that is not equilateral.

Hint:
This hexagon has equal angles, but it doesn't have equal sides:
Question 18 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles (Objective 0024).
Question 19

The chairs in a large room can be arranged in rows of 18, 25, or 60 with no chairs left over. If C is the smallest possible number of chairs in the room, which of the following inequalities does C satisfy?

A
\( \large C\le 300\)
Hint:
Find the LCM.
B
\( \large 300 < C \le 500 \)
Hint:
Find the LCM.
C
\( \large 500 < C \le 700 \)
Hint:
Find the LCM.
D
\( \large C>700\)
Hint:
The LCM is 900, which is the smallest number of chairs.
Question 19 Explanation: 
Topic: Apply LCM in "real-world" situations (according to standardized tests....) (Objective 0018).
Question 20

Each individual cube that makes up the rectangular solid depicted below has 6 inch sides.  What is the surface area of the solid in square feet?

 
A
\( \large 11\text{ f}{{\text{t}}^{2}}\)
Hint:
Check your units and make sure you're using feet and inches consistently.
B
\( \large 16.5\text{ f}{{\text{t}}^{2}}\)
Hint:
Each square has surface area \(\dfrac{1}{2} \times \dfrac {1}{2}=\dfrac {1}{4}\) sq feet. There are 9 squares on the top and bottom, and 12 on each of 4 sides, for a total of 66 squares. 66 squares \(\times \dfrac {1}{4}\) sq feet/square =16.5 sq feet.
C
\( \large 66\text{ f}{{\text{t}}^{2}}\)
Hint:
The area of each square is not 1.
D
\( \large 2376\text{ f}{{\text{t}}^{2}}\)
Hint:
Read the question more carefully -- the answer is supposed to be in sq feet, not sq inches.
Question 20 Explanation: 
Topics: Use unit conversions to solve measurement problems, and derive and use formulas for calculating surface areas of geometric shapes and figures (Objective 0023).
Question 21

Use the graph below to answer the question that follows:

The graph above represents the equation \( \large 3x+Ay=B\), where A and B are integers.  What are the values of A and B?

A
\( \large A = -2, B= 6\)
Hint:
Plug in (2,0) to get B=6, then plug in (0,-3) to get A=-2.
B
\( \large A = 2, B = 6\)
Hint:
Try plugging (0,-3) into this equation.
C
\( \large A = -1.5, B=-3\)
Hint:
The problem said that A and B were integers and -1.5 is not an integer. Don't try to use slope-intercept form.
D
\( \large A = 2, B = -3\)
Hint:
Try plugging (2,0) into this equation.
Question 21 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 22

Use the graph below to answer the question that follows:

 

The graph above best matches which of the following scenarios:

A

George left home at 10:00 and drove to work on a crooked path. He was stopped in traffic at 10:30 and 10:45. He drove 30 miles total.

Hint:
Just because he ended up 30 miles from home doesn't mean he drove 30 miles total.
B

George drove to work. On the way to work there is a little hill and a big hill. He slowed down for them. He made it to work at 11:15.

Hint:
The graph is not a picture of the roads.
C

George left home at 10:15. He drove 10 miles, then realized he‘d forgotten something at home. He turned back and got what he‘d forgotten. Then he drove in a straight line, at many different speeds, until he got to work around 11:15.

Hint:
A straight line on a distance versus time graph means constant speed.
D

George left home at 10:15. He drove 10 miles, then realized he‘d forgotten something at home. He turned back and got what he‘d forgotten. Then he drove at a constant speed until he got to work around 11:15.

Question 22 Explanation: 
Topic: Use qualitative graphs to represent functional relationships in the real world (Objective 0021).
Question 23

Four children randomly line up, single file.  What is the probability that they are in height order, with the shortest child in front?   All of the children are different heights.

A
\( \large \dfrac{1}{4}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
B
\( \large \dfrac{1}{256} \)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
C
\( \large \dfrac{1}{16}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
D
\( \large \dfrac{1}{24}\)
Hint:
The number of ways for the children to line up is \(4!=4 \times 3 \times 2 \times 1 =24\) -- there are 4 choices for who is first in line, then 3 for who is second, etc. Only one of these lines has the children in the order specified.
Question 23 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Question 24

A family has four children.  What is the probability that two children are girls and two are boys?  Assume the the probability of having a boy (or a girl) is 50%.

A
\( \large \dfrac{1}{2}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
B
\( \large \dfrac{1}{4}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
C
\( \large \dfrac{1}{5}\)
Hint:
Some configurations are more probable than others -- i.e. it's more likely to have two boys and two girls than all boys. Be sure you are weighting properly.
D
\( \large \dfrac{3}{8}\)
Hint:
There are two possibilities for each child, so there are \(2 \times 2 \times 2 \times 2 =16\) different configurations, e.g. from oldest to youngest BBBG, BGGB, GBBB, etc. Of these configurations, there are 6 with two boys and two girls (this is the combination \(_{4}C_{2}\) or "4 choose 2"): BBGG, BGBG, BGGB, GGBB, GBGB, and GBBG. Thus the probability is 6/16=3/8.
Question 24 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Question 25

Below is a portion of a number line:

 Point B is halfway between two tick marks.  What number is represented by Point B?

 
A
\( \large 0.645\)
Hint:
That point is marked on the line, to the right.
B
\( \large 0.6421\)
Hint:
That point is to the left of point B.
C
\( \large 0.6422\)
Hint:
That point is to the left of point B.
D
\( \large 0.6425\)
Question 25 Explanation: 
Topic: Using Number Lines (Objective 0017)
Question 26

What is the probability that two randomly selected people were born on the same day of the week?  Assume that all days are equally probable.

A
\( \large \dfrac{1}{7}\)
Hint:
It doesn't matter what day the first person was born on. The probability that the second person will match is 1/7 (just designate one person the first and the other the second). Another way to look at it is that if you list the sample space of all possible pairs, e.g. (Wed, Sun), there are 49 such pairs, and 7 of them are repeats of the same day, and 7/49=1/7.
B
\( \large \dfrac{1}{14}\)
Hint:
What would be the sample space here? Ie, how would you list 14 things that you pick one from?
C
\( \large \dfrac{1}{42}\)
Hint:
If you wrote the seven days of the week on pieces of paper and put the papers in a jar, this would be the probability that the first person picked Sunday and the second picked Monday from the jar -- not the same situation.
D
\( \large \dfrac{1}{49}\)
Hint:
This is the probability that they are both born on a particular day, e.g. Sunday.
Question 26 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 27

Which of the lists below contains only irrational numbers?

A
\( \large\pi , \quad \sqrt{6},\quad \sqrt{\dfrac{1}{2}}\)
B
\( \large\pi , \quad \sqrt{9}, \quad \pi +1\)
Hint:
\( \sqrt{9}=3\)
C
\( \large\dfrac{1}{3},\quad \dfrac{5}{4},\quad \dfrac{2}{9}\)
Hint:
These are all rational.
D
\( \large-3,\quad 14,\quad 0\)
Hint:
These are all rational.
Question 27 Explanation: 
Topic: Identifying rational and irrational numbers (Objective 0016).
Question 28

Which of the numbers below is not equivalent to 4%?

A
\( \large \dfrac{1}{25}\)
Hint:
1/25=4/100, so this is equal to 4% (be sure you read the question correctly).
B
\( \large \dfrac{4}{100}\)
Hint:
4/100=4% (be sure you read the question correctly).
C
\( \large 0.4\)
Hint:
0.4=40% so this is not equal to 4%
D
\( \large 0.04\)
Hint:
0.04=4/100, so this is equal to 4% (be sure you read the question correctly).
Question 28 Explanation: 
Converting between fractions, decimals, and percents (Objective 0017).
Question 29

A solution requires 4 ml of saline for every 7 ml of medicine. How much saline would be required for 50 ml of medicine?

A
\( \large 28 \dfrac{4}{7}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. The extra ml of saline requires 4 ml saline/ 7 ml medicine = 4/7 ml saline per 1 ml medicine.
B
\( \large 28 \dfrac{1}{4}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
C
\( \large 28 \dfrac{1}{7}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
D
\( \large 87.5\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
Question 29 Explanation: 
Topic: Apply proportional thinking to estimate quantities in real world situations (Objective 0019).
Question 30

Which property is not shared by all rhombi?

A

4 congruent sides

Hint:
The most common definition of a rhombus is a quadrilateral with 4 congruent sides.
B

A center of rotational symmetry

Hint:
The diagonal of a rhombus separates it into two congruent isosceles triangles. The center of this line is a center of 180 degree rotational symmetry that switches the triangles.
C

4 congruent angles

Hint:
Unless the rhombus is a square, it does not have 4 congruent angles.
D

2 sets of parallel sides

Hint:
All rhombi are parallelograms.
Question 30 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles, and symmetry (Objective 0024).
Question 31

In March of 2012, 1 dollar was worth the same as 0.761 Euros, and 1 dollar was also worth the same as 83.03 Japanese Yen.  Which of the expressions below gives the number of Yen that are worth 1 Euro?

A
\( \large {83}.0{3}\cdot 0.{761}\)
Hint:
This equation gives less than the number of yen per dollar, but 1 Euro is worth more than 1 dollar.
B
\( \large \dfrac{0.{761}}{{83}.0{3}}\)
Hint:
Number is way too small.
C
\( \large \dfrac{{83}.0{3}}{0.{761}}\)
Hint:
One strategy here is to use easier numbers, say 1 dollar = .5 Euros and 100 yen, then 1 Euro would be 200 Yen (change the numbers in the equations and see what works). Another is to use dimensional analysis: we want # yen per Euro, or yen/Euro = yen/dollar \(\times\) dollar/Euro = \(83.03 \times \dfrac {1}{0.761}\)
D
\( \large \dfrac{1}{0.{761}}\cdot \dfrac{1}{{83}.0{3}}\)
Hint:
Number is way too small.
Question 31 Explanation: 
Topic: Analyze the relationships among proportions, constant rates, and linear functions (Objective 0022).
Question 32

M is a multiple of 26.  Which of the following cannot be true?

A

M is odd.

Hint:
All multiples of 26 are also multiples of 2, so they must be even.
B

M is a multiple of 3.

Hint:
3 x 26 is a multiple of both 3 and 26.
C

M is 26.

Hint:
1 x 26 is a multiple of 26.
D

M is 0.

Hint:
0 x 26 is a multiple of 26.
Question 32 Explanation: 
Topic: Characteristics of composite numbers (Objective 0018).
Question 33

What is the length of side \(\overline{BD}\) in the triangle below, where \(\angle DBA\) is a right angle?

A
\( \large 1\)
Hint:
Use the Pythagorean Theorem.
B
\( \large \sqrt{5}\)
Hint:
\(2^2+e^2=3^2\) or \(4+e^2=9;e^2=5; e=\sqrt{5}\).
C
\( \large \sqrt{13}\)
Hint:
e is not the hypotenuse.
D
\( \large 5\)
Hint:
Use the Pythagorean Theorem.
Question 33 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023), and recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 34

There are 15 students for every teacher.  Let t represent the number of teachers and let s represent the number of students.  Which of the following equations is correct?

A
\( \large t=s+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
B
\( \large s=t+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
C
\( \large t=15s\)
Hint:
This is a really easy mistake to make, which comes from transcribing directly from English, "1 teachers equals 15 students." To see that it's wrong, plug in s=2; do you really need 30 teachers for 2 students? To avoid this mistake, insert the word "number," "Number of teachers equals 15 times number of students" is more clearly problematic.
D
\( \large s=15t\)
Question 34 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Question 35

Some children explored the diagonals in 2 x 2 squares on pages of a calendar (where all four squares have numbers in them).  They conjectured that the sum of the diagonals is always equal; in the example below, 8+16=9+15.

 

Which of the equations below could best be used to explain why the children's conjecture is correct?

A
\( \large 8x+16x=9x+15x\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
B
\( \large x+(x+2)=(x+1)+(x+1)\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
C
\( \large x+(x+8)=(x+1)+(x+7)\)
Hint:
x is the number in the top left square, x+8 is one below and to the right, x+1 is to the right of x, and x+7 is below x.
D
\( \large x+8+16=x+9+15\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
Question 35 Explanation: 
Topic: Recognize and apply the concepts of variable, equality, and equation to express relationships algebraically (Objective 0020).
Question 36

Kendra is trying to decide which fraction is greater, \(  \dfrac{4}{7}\) or \(  \dfrac{5}{8}\). Which of the following answers shows the best reasoning?

A

\( \dfrac{4}{7}\) is \( \dfrac{3}{7}\)away from 1, and \( \dfrac{5}{8}\) is \( \dfrac{3}{8}\)away from 1. Since eighth‘s are smaller than seventh‘s, \( \dfrac{5}{8}\) is closer to 1, and is the greater of the two fractions.

B

\( 7-4=3\) and \( 8-5=3\), so the fractions are equal.

Hint:
Not how to compare fractions. By this logic, 1/2 and 3/4 are equal, but 1/2 and 2/4 are not.
C

\( 4\times 8=32\) and \( 7\times 5=35\). Since \( 32<35\) , \( \dfrac{5}{8}<\dfrac{4}{7}\)

Hint:
Starts out as something that works, but the conclusion is wrong. 4/7 = 32/56 and 5/8 = 35/56. The cross multiplication gives the numerators, and 35/56 is bigger.
D

\( 4<5\) and \( 7<8\), so \( \dfrac{4}{7}<\dfrac{5}{8}\)

Hint:
Conclusion is correct, logic is wrong. With this reasoning, 1/2 would be less than 2/100,000.
Question 36 Explanation: 
Topics: Comparing fractions, and understanding the meaning of fractions (Objective 0017).
Question 37

On a map the distance from Boston to Detroit is 6 cm, and these two cities are 702 miles away from each other. Assuming the scale of the map is the same throughout, which answer below is closest to the distance between Boston and San Francisco on the map, given that they are 2,708 miles away from each other?

A

21 cm

Hint:
How many miles would correspond to 24 cm on the map? Try adjusting from there.
B

22 cm

Hint:
How many miles would correspond to 24 cm on the map? Try adjusting from there.
C

23 cm

Hint:
One way to solve this without a calculator is to note that 4 groups of 6 cm is 2808 miles, which is 100 miles too much. Then 100 miles would be about 1/7 th of 6 cm, or about 1 cm less than 24 cm.
D

24 cm

Hint:
4 groups of 6 cm is over 2800 miles on the map, which is too much.
Question 37 Explanation: 
Topic: Apply proportional thinking to estimate quantities in real world situations (Objective 0019).
Question 38

The table below gives data from various years on how many young girls drank milk.

Based on the data given above, what was the probability that a randomly chosen girl in 1990 drank milk?

A
\( \large \dfrac{502}{1222}\)
Hint:
This is the probability that a randomly chosen girl who drinks milk was in the 1989-1991 food survey.
B
\( \large \dfrac{502}{2149}\)
Hint:
This is the probability that a randomly chosen girl from the whole survey drank milk and was also surveyed in 1989-1991.
C
\( \large \dfrac{502}{837}\)
D
\( \large \dfrac{1222}{2149}\)
Hint:
This is the probability that a randomly chosen girl from any year of the survey drank milk.
Question 38 Explanation: 
Topic: Recognize and apply the concept of conditional probability (Objective 0026).
Question 39

Which of the following points is closest to \( \dfrac{34}{135} \times \dfrac{53}{86}\)?

A

A

Hint:
\(\frac{34}{135} \approx \frac{1}{4}\) and \( \frac{53}{86} \approx \frac {2}{3}\). \(\frac {1}{4}\) of \(\frac {2}{3}\) is small and closest to A.
B

B

Hint:
Estimate with simpler fractions.
C

C

Hint:
Estimate with simpler fractions.
D

D

Hint:
Estimate with simpler fractions.
Question 39 Explanation: 
Topic: Understand meaning and models of operations on fractions (Objective 0019).
Question 40

Use the table below to answer the question that follows:

Each number in the table above represents a value W that is determined by the values of x and y.  For example, when x=3 and y=1, W=5.  What is the value of W when x=9 and y=14?  Assume that the patterns in the table continue as shown.

A
\( \large W=-5\)
Hint:
When y is even, W is even.
B
\( \large W=4\)
Hint:
Note that when x increases by 1, W increases by 2, and when y increases by 1, W decreases by 1. At x=y=0, W=0, so at x=9, y=14, W has increased by \(9 \times 2\) and decreased by 14, or W=18-14=4.
C
\( \large W=6\)
Hint:
Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0.
D
\( \large W=32\)
Hint:
Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0.
Question 40 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic) (Objective 0021)
Question 41

The letters A, and B represent digits (possibly equal) in the ten digit number x=1,438,152,A3B.   For which values of A and B is x divisible by 12, but not by 9?

A
\( \large A = 0, B = 4\)
Hint:
Digits add to 31, so not divisible by 3, so not divisible by 12.
B
\( \large A = 7, B = 2\)
Hint:
Digits add to 36, so divisible by 9.
C
\( \large A = 0, B = 6\)
Hint:
Digits add to 33, divisible by 3, not 9. Last digits are 36, so divisible by 4, and hence by 12.
D
\( \large A = 4, B = 8\)
Hint:
Digits add to 39, divisible by 3, not 9. Last digits are 38, so not divisible by 4, so not divisible by 12.
Question 41 Explanation: 
Topic: Demonstrate knowledge of divisibility rules (Objective 0018).
Question 42

How many factors does 80 have?

A
\( \large8\)
Hint:
Don't forget 1 and 80.
B
\( \large9\)
Hint:
Only perfect squares have an odd number of factors -- otherwise factors come in pairs.
C
\( \large10\)
Hint:
1,2,4,5,8,10,16,20,40,80
D
\( \large12\)
Hint:
Did you count a number twice? Include a number that isn't a factor?
Question 42 Explanation: 
Topic: Understand and apply principles of number theory (Objective 0018).
Question 43

Here are some statements:

I) 5 is an integer    II)\( -5 \)  is an integer    III) \(0\) is an integer

Which of the statements are true?

A

I only

B

I and II only

C

I and III only

D

I, II, and III

Hint:
The integers are ...-3, -2, -1, 0, 1, 2, 3, ....
Question 43 Explanation: 
Topic: Characteristics of Integers (Objective 0016)
Question 44

Below is a pictorial representation of \(2\dfrac{1}{2}\div \dfrac{2}{3}\):

Which of the following is the best description of how to find the quotient from the picture?

A

The quotient is \(3\dfrac{3}{4}\). There are 3 whole blocks each representing \(\dfrac{2}{3}\) and a partial block composed of 3 small rectangles. The 3 small rectangles represent \(\dfrac{3}{4}\) of \(\dfrac{2}{3}\).

B

The quotient is \(3\dfrac{1}{2}\). There are 3 whole blocks each representing \(\dfrac{2}{3}\) and a partial block composed of 3 small rectangles. The 3 small rectangles represent \(\dfrac{3}{6}\) of a whole, or \(\dfrac{1}{2}\).

Hint:
We are counting how many 2/3's are in
2 1/2: the unit becomes 2/3, not 1.
C

The quotient is \(\dfrac{4}{15}\). There are four whole blocks separated into a total of 15 small rectangles.

Hint:
This explanation doesn't make much sense. Probably you are doing "invert and multiply," but inverting the wrong thing.
D

This picture cannot be used to find the quotient because it does not show how to separate \(2\dfrac{1}{2}\) into equal sized groups.

Hint:
Study the measurement/quotative model of division. It's often very useful with fractions.
Question 44 Explanation: 
Topic: Recognize and analyze pictorial representations of number operations. (Objective 0019).
Question 45

A class is using base-ten block to represent numbers.  A large cube represents 1000, a flat represents 100, a rod represents 10, and a little cube represents 1.  Which of these is not a correct representation for 2,347?

A

23 flats, 4 rods, 7 little cubes

Hint:
Be sure you read the question carefully: 2300+40+7=2347
B

2 large cubes, 3 flats, 47 rods

Hint:
2000+300+470 \( \neq\) 2347
C

2 large cubes, 34 rods, 7 little cubes

Hint:
Be sure you read the question carefully: 2000+340+7=2347
D

2 large cubes, 3 flats, 4 rods, 7 little cubes

Hint:
Be sure you read the question carefully: 2000+300+40+7=2347
Question 45 Explanation: 
Topic: Place Value (Objective 0016)
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 45 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
2122232425
2627282930
3132333435
3637383940
4142434445
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.