Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

There are 15 students for every teacher.  Let t represent the number of teachers and let s represent the number of students.  Which of the following equations is correct?

A
\( \large t=s+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
B
\( \large s=t+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
C
\( \large t=15s\)
Hint:
This is a really easy mistake to make, which comes from transcribing directly from English, "1 teachers equals 15 students." To see that it's wrong, plug in s=2; do you really need 30 teachers for 2 students? To avoid this mistake, insert the word "number," "Number of teachers equals 15 times number of students" is more clearly problematic.
D
\( \large s=15t\)
Question 1 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Question 2

Here is a mental math strategy for computing 26 x 16:

Step 1: 100 x 16 = 1600

Step 2: 25 x 16 = 1600 ÷· 4 = 400

Step 3: 26 x 16 = 400 + 16 = 416

Which property best justifies Step 3 in this strategy?

A

Commutative Property.

Hint:
For addition, the commutative property is \(a+b=b+a\) and for multiplication it's \( a \times b = b \times a\).
B

Associative Property.

Hint:
For addition, the associative property is \((a+b)+c=a+(b+c)\) and for multiplication it's \((a \times b) \times c=a \times (b \times c)\)
C

Identity Property.

Hint:
0 is the additive identity, because \( a+0=a\) and 1 is the multiplicative identity because \(a \times 1=a\). The phrase "identity property" is not standard.
D

Distributive Property.

Hint:
\( (25+1) \times 16 = 25 \times 16 + 1 \times 16 \). This is an example of the distributive property of multiplication over addition.
Question 2 Explanation: 
Topic: Analyze and justify mental math techniques, by applying arithmetic properties such as commutative, distributive, and associative (Objective 0019). Note that it's hard to write a question like this as a multiple choice question -- worthwhile to understand why the other steps work too.
Question 3

What set of transformations will transform the leftmost image into the rightmost image?

 
A

A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.

Hint:
Part of the figure would move below the x-axis with these transformations.
B

A translation 3 units up, followed by a reflection about the line y=x.

Hint:
See what happens to the point (5,1) under this set of transformations.
C

A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up.

D

A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.

Hint:
See what happens to the point (3,3) under this set of transformations.
Question 3 Explanation: 
Topic:Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations) (Objective 0024).
Question 4

What is the mathematical name of the three-dimensional polyhedron depicted below?

A

Tetrahedron

Hint:
All the faces of a tetrahedron are triangles.
B

Triangular Prism

Hint:
A prism has two congruent, parallel bases, connected by parallelograms (since this is a right prism, the parallelograms are rectangles).
C

Triangular Pyramid

Hint:
A pyramid has one base, not two.
D

Trigon

Hint:
A trigon is a triangle (this is not a common term).
Question 4 Explanation: 
Topic: Classify and analyze three-dimensional figures using attributes of faces, edges, and vertices (Objective 0024).
Question 5

Here is a number trick:

 1) Pick a whole number

 2) Double your number.

 3) Add 20 to the above result.

 4) Multiply the above by 5

 5) Subtract 100

 6) Divide by 10

The result is always the number that you started with! Suppose you start by picking N. Which of the equations below best demonstrates that the result after Step 6 is also N?

A
\( \large N*2+20*5-100\div 10=N\)
Hint:
Use parentheses or else order of operations is off.
B
\( \large \left( \left( 2*N+20 \right)*5-100 \right)\div 10=N\)
C
\( \large \left( N+N+20 \right)*5-100\div 10=N\)
Hint:
With this answer you would subtract 10, instead of subtracting 100 and then dividing by 10.
D
\( \large \left( \left( \left( N\div 10 \right)-100 \right)*5+20 \right)*2=N\)
Hint:
This answer is quite backwards.
Question 5 Explanation: 
Topic: Recognize and apply the concepts of variable, function, equality, and equation to express relationships algebraically (Objective 0020).
Question 6

The histogram below shows the number of pairs of footware owned by a group of college students.

Which of the following statements can be inferred from the graph above?

A

The median number of pairs of footware owned is between 50 and 60 pairs.

Hint:
The same number of data points are less than the median as are greater than the median -- but on this histogram, clearly more than half the students own less than 50 pairs of shoes, so the median is less than 50.
B

The mode of the number of pairs of footware owned is 20.

Hint:
The mode is the most common number of pairs of footwear owned. We can't tell it from this histogram because each bar represents 10 different numbers-- perhaps 8 students each own each number from 10 to 19, but 40 students own exactly 6 pairs of shoes.... or perhaps not....
C

The mean number of pairs of footware owned is less than the median number of pairs of footware owned.

Hint:
This is a right skewed distribution, and so the mean is bigger than the median -- the few large values on the right pull up the mean, but have little effect on the median.
D

The median number of pairs of footware owned is between 10 and 20.

Hint:
There are approximately 230 students represented in this survey, and the 41st through 120th lowest values are between 10 and 20 -- thus the middle value is in that range.
Question 6 Explanation: 
Topics: Analyze and interpret various graphic and data representations, and use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 7

Solve for x: \(\large 4-\dfrac{2}{3}x=2x\)

A
\( \large x=3\)
Hint:
Try plugging x=3 into the equation.
B
\( \large x=-3\)
Hint:
Left side is positive, right side is negative when you plug this in for x.
C
\( \large x=\dfrac{3}{2}\)
Hint:
One way to solve: \(4=\dfrac{2}{3}x+2x\) \(=\dfrac{8}{3}x\).\(x=\dfrac{3 \times 4}{8}=\dfrac{3}{2}\). Another way is to just plug x=3/2 into the equation and see that each side equals 3 -- on a multiple choice test, you almost never have to actually solve for x.
D
\( \large x=-\dfrac{3}{2}\)
Hint:
Left side is positive, right side is negative when you plug this in for x.
Question 7 Explanation: 
Topic: Solve linear equations (Objective 0020).
Question 8

Elena is going to use a calculator to check whether or not 267 is prime. She will pick certain divisors, and then find 267 divided by each, and see if she gets a whole number. If she never gets a whole number, then she's found a prime. Which numbers does Elena NEED to check before she can stop checking and be sure she has a prime?

A

All natural numbers from 2 to 266.

Hint:
She only needs to check primes -- checking the prime factors of any composite is enough to look for divisors. As a test taking strategy, the other three choices involve primes, so worth thinking about.
B

All primes from 2 to 266 .

Hint:
Remember, factors come in pairs (except for square root factors), so she would first find the smaller of the pair and wouldn't need to check the larger.
C

All primes from 2 to 133 .

Hint:
She doesn't need to check this high. Factors come in pairs, and something over 100 is going to be paired with something less than 3, so she will find that earlier.
D

All primes from \( \large 2\) to \( \large \sqrt{267}\).

Hint:
\(\sqrt{267} \times \sqrt{267}=267\). Any other pair of factors will have one factor less than \( \sqrt{267}\) and one greater, so she only needs to check up to \( \sqrt{267}\).
Question 8 Explanation: 
Topic: Identify prime and composite numbers (Objective 0018).
Question 9

Use the graph below to answer the question that follows:

The graph above represents the equation \( \large 3x+Ay=B\), where A and B are integers.  What are the values of A and B?

A
\( \large A = -2, B= 6\)
Hint:
Plug in (2,0) to get B=6, then plug in (0,-3) to get A=-2.
B
\( \large A = 2, B = 6\)
Hint:
Try plugging (0,-3) into this equation.
C
\( \large A = -1.5, B=-3\)
Hint:
The problem said that A and B were integers and -1.5 is not an integer. Don't try to use slope-intercept form.
D
\( \large A = 2, B = -3\)
Hint:
Try plugging (2,0) into this equation.
Question 9 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 10

Which of the numbers below is not equivalent to 4%?

A
\( \large \dfrac{1}{25}\)
Hint:
1/25=4/100, so this is equal to 4% (be sure you read the question correctly).
B
\( \large \dfrac{4}{100}\)
Hint:
4/100=4% (be sure you read the question correctly).
C
\( \large 0.4\)
Hint:
0.4=40% so this is not equal to 4%
D
\( \large 0.04\)
Hint:
0.04=4/100, so this is equal to 4% (be sure you read the question correctly).
Question 10 Explanation: 
Converting between fractions, decimals, and percents (Objective 0017).
Question 11

Which of the lists below is in order from least to greatest value?

A
\( \large \dfrac{1}{2},\quad \dfrac{1}{3},\quad \dfrac{1}{4},\quad \dfrac{1}{5}\)
Hint:
This is ordered from greatest to least.
B
\( \large \dfrac{1}{3},\quad \dfrac{2}{7},\quad \dfrac{3}{8},\quad \dfrac{4}{11}\)
Hint:
1/3 = 2/6 is bigger than 2/7.
C
\( \large \dfrac{1}{4},\quad \dfrac{2}{5},\quad \dfrac{2}{3},\quad \dfrac{4}{5}\)
Hint:
One way to look at this: 1/4 and 2/5 are both less than 1/2, and 2/3 and 4/5 are both greater than 1/2. 1/4 is 25% and 2/5 is 40%, so 2/5 is greater. The distance from 2/3 to 1 is 1/3 and from 4/5 to 1 is 1/5, and 1/5 is less than 1/3, so 4/5 is bigger.
D
\( \large \dfrac{7}{8},\quad \dfrac{6}{7},\quad \dfrac{5}{6},\quad \dfrac{4}{5}\)
Hint:
This is in order from greatest to least.
Question 11 Explanation: 
Topic: Ordering Fractions (Objective 0017)
Question 12

Use the expression below to answer the question that follows.

                 \(\large \dfrac{\left( 155 \right)\times \left( 6,124 \right)}{977}\)

Which of the following is the best estimate of the expression above?

A

100

Hint:
6124/977 is approximately 6.
B

200

Hint:
6124/977 is approximately 6.
C

1,000

Hint:
6124/977 is approximately 6. 155 is approximately 150, and \( 6 \times 150 = 3 \times 300 = 900\), so this answer is closest.
D

2,000

Hint:
6124/977 is approximately 6.
Question 12 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016).
Question 13

The "houses" below are made of toothpicks and gum drops.

Which of the following does not represent the number of gumdrops in a row of h houses?

A
\( \large 2+3h\)
Hint:
Think of this as start with 2 gumdrops on the left wall, and then add 3 gumdrops for each house.
B
\( \large 5+3(h-1)\)
Hint:
Think of this as start with one house, and then add 3 gumdrops for each of the other h-1 houses.
C
\( \large h+(h+1)+(h+1)\)
Hint:
Look at the gumdrops in 3 rows: h gumdrops for the "rooftops," h+1 for the tops of the vertical walls, and h+1 for the floors.
D
\( \large 5+3h\)
Hint:
This one is not a correct equation (which makes it the correct answer!). Compare to choice A. One of them has to be wrong, as they differ by 3.
Question 13 Explanation: 
Topic: Translate among different representations (e.g., tables, graphs, algebraic expressions, verbal descriptions) of functional relationships (Objective 0021).
Question 14

The table below gives data from various years on how many young girls drank milk.

Based on the data given above, what was the probability that a randomly chosen girl in 1990 drank milk?

A
\( \large \dfrac{502}{1222}\)
Hint:
This is the probability that a randomly chosen girl who drinks milk was in the 1989-1991 food survey.
B
\( \large \dfrac{502}{2149}\)
Hint:
This is the probability that a randomly chosen girl from the whole survey drank milk and was also surveyed in 1989-1991.
C
\( \large \dfrac{502}{837}\)
D
\( \large \dfrac{1222}{2149}\)
Hint:
This is the probability that a randomly chosen girl from any year of the survey drank milk.
Question 14 Explanation: 
Topic: Recognize and apply the concept of conditional probability (Objective 0026).
Question 15

The Venn Diagram below gives data on the number of seniors, athletes, and vegetarians in the student body at a college:

How many students at the college are seniors who are not vegetarians?

A
\( \large 137\)
Hint:
Doesn't include the senior athletes who are not vegetarians.
B
\( \large 167\)
C
\( \large 197\)
Hint:
That's all seniors, including vegetarians.
D
\( \large 279\)
Hint:
Includes all athletes who are not vegetarians, some of whom are not seniors.
Question 15 Explanation: 
Topic: Venn Diagrams (Objective 0025)
Question 16

Use the samples of a student's work below to answer the question that follows:

\( \large \dfrac{2}{3}\times \dfrac{3}{4}=\dfrac{4\times 2}{3\times 3}=\dfrac{8}{9}\) \( \large \dfrac{2}{5}\times \dfrac{7}{7}=\dfrac{7\times 2}{5\times 7}=\dfrac{2}{5}\) \( \large \dfrac{7}{6}\times \dfrac{3}{4}=\dfrac{4\times 7}{6\times 3}=\dfrac{28}{18}=\dfrac{14}{9}\)

Which of the following best describes the mathematical validity of the algorithm the student is using?

A

It is not valid. It never produces the correct answer.

Hint:
In the middle example,the answer is correct.
B

It is not valid. It produces the correct answer in a few special cases, but it‘s still not a valid algorithm.

Hint:
Note that this algorithm gives a/b divided by c/d, not a/b x c/d, but some students confuse multiplication and cross-multiplication. If a=0 or if c/d =1, division and multiplication give the same answer.
C

It is valid if the rational numbers in the multiplication problem are in lowest terms.

Hint:
Lowest terms is irrelevant.
D

It is valid for all rational numbers.

Hint:
Can't be correct as the first and last examples have the wrong answers.
Question 16 Explanation: 
Topic: Analyze Non-Standard Computational Algorithms (Objective 0019).
Question 17

How many factors does 80 have?

A
\( \large8\)
Hint:
Don't forget 1 and 80.
B
\( \large9\)
Hint:
Only perfect squares have an odd number of factors -- otherwise factors come in pairs.
C
\( \large10\)
Hint:
1,2,4,5,8,10,16,20,40,80
D
\( \large12\)
Hint:
Did you count a number twice? Include a number that isn't a factor?
Question 17 Explanation: 
Topic: Understand and apply principles of number theory (Objective 0018).
Question 18

A sales companies pays its representatives $2 for each item sold, plus 40% of the price of the item.   The rest of the money that the representatives collect goes to the company.  All transactions are in cash, and all items cost $4 or more.   If the price of an item in dollars is p, which expression represents the amount of money the company collects when the item is sold?

A
\( \large \dfrac{3}{5}p-2\)
Hint:
The company gets 3/5=60% of the price, minus the $2 per item.
B
\( \large \dfrac{3}{5}\left( p-2 \right)\)
Hint:
This is sensible, but not what the problem states.
C
\( \large \dfrac{2}{5}p+2\)
Hint:
The company pays the extra $2; it doesn't collect it.
D
\( \large \dfrac{2}{5}p-2\)
Hint:
This has the company getting 2/5 = 40% of the price of each item, but that's what the representative gets.
Question 18 Explanation: 
Topic: Use algebra to solve word problems involving fractions, ratios, proportions, and percents (Objective 0020).
Question 19

The first histogram shows the average life expectancies for women in different countries in Africa in 1998; the second histogram gives similar data for Europe:

  

How much bigger is the range of the data for Africa than the range of the data for Europe?

A

0 years

Hint:
Range is the maximum life expectancy minus the minimum life expectancy.
B

12 years

Hint:
Are you subtracting frequencies? Range is about values of the data, not frequency.
C

18 years

Hint:
It's a little hard to read the graph, but it doesn't matter if you're consistent. It looks like the range for Africa is 80-38= 42 years and for Europe is 88-64 = 24; 42-24=18.
D

42 years

Hint:
Read the question more carefully.
Question 19 Explanation: 
Topic: Compare different data sets (Objective 0025).
Question 20

Below are four inputs and outputs for a function machine representing the function A:

Which of the following equations could also represent A  for the values shown?

A
\( \large A(n)=n+4\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= -1 would output 3, not 0 as the machine does.
B
\( \large A(n)=n+2\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 4, not 6 as the machine does.
C
\( \large A(n)=2n+2\)
Hint:
Simply plug in each of the four function machine input values, and see that the equation produces the correct output, e.g. A(2)=6, A(-1)=0, etc.
D
\( \large A(n)=2\left( n+2 \right)\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 8, not 6 as the machine does.
Question 20 Explanation: 
Topics: Understand various representations of functions, and translate among different representations of functional relationships (Objective 0021).
Question 21

P is a prime number that divides 240.  Which of the following must be true?

A

P divides 30

Hint:
2, 3, and 5 are the prime factors of 240, and all divide 30.
B

P divides 48

Hint:
P=5 doesn't work.
C

P divides 75

Hint:
P=2 doesn't work.
D

P divides 80

Hint:
P=3 doesn't work.
Question 21 Explanation: 
Topic: Find the prime factorization of a number and recognize its uses (Objective 0018).
Question 22

The following story situations model \( 12\div 3\):

I)  Jack has 12 cookies, which he wants to share equally between himself and two friends.  How many cookies does each person get?

II) Trent has 12 cookies, which he wants to put into bags of 3 cookies each.  How many bags can he make?

III) Cicely has $12.  Cookies cost $3 each.  How many cookies can she buy?

Which of these questions illustrate the same model of division, either partitive (partioning) or measurement (quotative)?

A

I and II

B

I and III

C

II and III

Hint:
Problem I is partitive (or partitioning or sharing) -- we put 12 objects into 3 groups. Problems II and III are quotative (or measurement) -- we put 12 objects in groups of 3.
D

All three problems model the same meaning of division

Question 22 Explanation: 
Topic: Understand models of operations on numbers (Objective 0019).
Question 23

Use the expression below to answer the question that follows:

                 \( \large \dfrac{\left( 7,154 \right)\times \left( 896 \right)}{216}\)

Which of the following is the best estimate of the expression above?

A

2,000

Hint:
The answer is bigger than 7,000.
B

20,000

Hint:
Estimate 896/216 first.
C

3,000

Hint:
The answer is bigger than 7,000.
D

30,000

Hint:
\( \dfrac{896}{216} \approx 4\) and \(7154 \times 4\) is over 28,000, so this answer is closest.
Question 23 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016, overlaps with other objectives).
Question 24

Which of the following is equivalent to

\( \large A-B+C\div D\times E\)?

A
\( \large A-B-\dfrac{C}{DE} \)
Hint:
In the order of operations, multiplication and division have the same priority, so do them left to right; same with addition and subtraction.
B
\( \large A-B+\dfrac{CE}{D}\)
Hint:
In practice, you're better off using parentheses than writing an expression like the one in the question. The PEMDAS acronym that many people memorize is misleading. Multiplication and division have equal priority and are done left to right. They have higher priority than addition and subtraction. Addition and subtraction also have equal priority and are done left to right.
C
\( \large \dfrac{AE-BE+CE}{D}\)
Hint:
Use order of operations, don't just compute left to right.
D
\( \large A-B+\dfrac{C}{DE}\)
Hint:
In the order of operations, multiplication and division have the same priority, so do them left to right
Question 24 Explanation: 
Topic: Justify algebraic manipulations by application of the properties of order of operations (Objective 0020).
Question 25

If two fair coins are flipped, what is the probability that one will come up heads and the other tails?

A
\( \large \dfrac{1}{4}\)
Hint:
Think of the coins as a penny and a dime, and list all possibilities.
B
\( \large \dfrac{1}{3} \)
Hint:
This is a very common misconception. There are three possible outcomes -- both heads, both tails, and one of each -- but they are not equally likely. Think of the coins as a penny and a dime, and list all possibilities.
C
\( \large \dfrac{1}{2}\)
Hint:
The possibilities are HH, HT, TH, TT, and all are equally likely. Two of the four have one of each coin, so the probability is 2/4=1/2.
D
\( \large \dfrac{3}{4}\)
Hint:
Think of the coins as a penny and a dime, and list all possibilities.
Question 25 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 26
I. \(\large \dfrac{1}{2}+\dfrac{1}{3}\) II. \( \large   .400000\)  III. \(\large\dfrac{1}{5}+\dfrac{1}{5}\)
     
IV. \( \large 40\% \) V. \( \large 0.25 \) VI. \(\large\dfrac{14}{35}\)

 

Which of the lists below includes all of the above expressions that are equivalent to \( \dfrac{2}{5}\)?

A

I, III, V, VI

Hint:
I and V are not at all how fractions and decimals work.
B

III, VI

Hint:
These are right, but there are more.
C

II, III, VI

Hint:
These are right, but there are more.
D

II, III, IV, VI

Question 26 Explanation: 
Topic: Converting between fractions, decimals, and percents (Objective 0017)
Question 27

Which of the following sets of polygons can be assembled to form a pentagonal pyramid?

A

2 pentagons and 5 rectangles.

Hint:
These can be assembled to form a pentagonal prism, not a pentagonal pyramid.
B

1 square and 5 equilateral triangles.

Hint:
You need a pentagon for a pentagonal pyramid.
C

1 pentagon and 5 isosceles triangles.

D

1 pentagon and 10 isosceles triangles.

Question 27 Explanation: 
Topic:Classify and analyze three-dimensional figures using attributes of faces, edges, and vertices (Objective 0024).
Question 28

Which of the following is equivalent to \(  \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}?\)

A
\( \large \dfrac{7}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
B
\( \large \dfrac{1}{2}\)
Hint:
Addition and subtraction are of equal priority in the order of operations -- do them left to right.
C
\( \large \dfrac{3}{4}\)
Hint:
\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}\)=\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}+-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}\)
D
\( \large \dfrac{3}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
Question 28 Explanation: 
Topic: Operations on Fractions, Order of Operations (Objective 0019).
Question 29

A family on vacation drove the first 200 miles in 4 hours and the second 200 miles in 5 hours.  Which expression below gives their average speed for the entire trip?

A
\( \large \dfrac{200+200}{4+5}\)
Hint:
Average speed is total distance divided by total time.
B
\( \large \left( \dfrac{200}{4}+\dfrac{200}{5} \right)\div 2\)
Hint:
This seems logical, but the problem is that it weights the first 4 hours and the second 5 hours equally, when each hour should get the same weight in computing the average speed.
C
\( \large \dfrac{200}{4}+\dfrac{200}{5} \)
Hint:
This would be an average of 90 miles per hour!
D
\( \large \dfrac{400}{4}+\dfrac{400}{5} \)
Hint:
This would be an average of 180 miles per hour! Even a family of race car drivers probably doesn't have that average speed on a vacation!
Question 29 Explanation: 
Topic: Solve a variety of measurement problems (e.g., time, temperature, rates, average rates of change) in real-world situations (Objective 0023).
Question 30

In each expression below  N represents a negative integer. Which expression could have a negative value?

A
\( \large {{N}^{2}}\)
Hint:
Squaring always gives a non-negative value.
B
\( \large 6-N\)
Hint:
A story problem for this expression is, if it was 6 degrees out at noon and N degrees out at sunrise, by how many degrees did the temperature rise by noon? Since N is negative, the answer to this question has to be positive, and more than 6.
C
\( \large -N\)
Hint:
If N is negative, then -N is positive
D
\( \large 6+N\)
Hint:
For example, if \(N=-10\), then \(6+N = -4\)
Question 30 Explanation: 
If you are stuck on a question like this, try a few examples to eliminate some choices and to help you understand what the question means. Topic: Characteristics of integers (Objective 0016).
Question 31

In January 2011, the national debt was about 14 trillion dollars and the US population was about 300 million people.  Someone reading these figures estimated that the national debt was about $5,000 per person.   Which of these statements best describes the reasonableness of this estimate?

A

It is too low by a factor of 10

Hint:
14 trillion \( \approx 15 \times {{10}^{12}} \) and 300 million \( \approx 3 \times {{10}^{8}}\), so the true answer is about \( 5 \times {{10}^{4}} \) or $50,000.
B

It is too low by a factor of 100

C

It is too high by a factor of 10

D

It is too high by a factor of 100

Question 31 Explanation: 
Topics: Estimation, Scientific Notation in the real world (Objective 0016).
Question 32

There are six gumballs in a bag — two red and four green.  Six children take turns picking a gumball out of the bag without looking.   They do not return any gumballs to the bag.  What is the probability that the first two children to pick from the bag pick the red gumballs?

A
\( \large \dfrac{1}{3}\)
Hint:
This is the probability that the first child picks a red gumball, but not that the first two children pick red gumballs.
B
\( \large \dfrac{1}{8}\)
Hint:
Are you adding things that you should be multiplying?
C
\( \large \dfrac{1}{9}\)
Hint:
This would be the probability if the gumballs were returned to the bag.
D
\( \large \dfrac{1}{15}\)
Hint:
The probability that the first child picks red is 2/6 = 1/3. Then there are 5 gumballs in the bag, one red, so the probability that the second child picks red is 1/5. Thus 1/5 of the time, after the first child picks red, the second does too, so the probability is 1/5 x 1/3 = 1/15.
Question 32 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 33

The function d(x) gives the result when 12 is divided by x.  Which of the following is a graph of d(x)?

 
A
Hint:
d(x) is 12 divided by x, not x divided by 12.
B
Hint:
When x=2, what should d(x) be?
C
Hint:
When x=2, what should d(x) be?
D
Question 33 Explanation: 
Topic: Identify and analyze direct and inverse relationships in tables, graphs, algebraic expressions and real-world situations (Objective 0021)
Question 34

At a school fundraising event, people can buy a ticket to spin a spinner like the one below.  The region that the spinner lands in tells which, if any, prize the person wins.

If 240 people buy tickets to spin the spinner, what is the best estimate of the number of keychains that will be given away?

A

40

Hint:
"Keychain" appears on the spinner twice.
B

80

Hint:
The probability of getting a keychain is 1/3, and so about 1/3 of the time the spinner will win.
C

100

Hint:
What is the probability of winning a keychain?
D

120

Hint:
That would be the answer for getting any prize, not a keychain specifically.
Question 34 Explanation: 
Topic: I would call this topic expected value, which is not listed on the objectives. This question is very similar to one on the sample test. It's not a good question in that it's oversimplified (a more difficult and interesting question would be something like, "The school bought 100 keychains for prizes, what is the probability that they will run out before 240 people play?"). In any case, I believe the objective this is meant for is, "Recognize the difference between experimentally and theoretically determined probabilities in real-world situations. (Objective 0026)." This is not something easily assessed with multiple choice .
Question 35

Use the table below to answer the question that follows:

Gordon wants to buy three pounds of nuts.  Each of the stores above ordinarily sells the nuts for $4.99 a pound, but is offering a discount this week.  At which store can he buy the nuts for the least amount of money?

A

Store A

Hint:
This would save about $2.50. You can quickly see that D saves more.
B

Store B

Hint:
This saves 15% and C saves 25%.
C

Store C

D

Store D

Hint:
This is about 20% off, which is less of a discount than C.
Question 35 Explanation: 
Topic: Understand the meanings and models of integers, fractions, decimals,percents, and mixed numbers and apply them to the solution of word problems (Objective 0017).
Question 36

Which of the following values of x satisfies the inequality \( \large \left| {{(x+2)}^{3}} \right|<3?\)

A
\( \large x=-3\)
Hint:
\( \left| {{(-3+2)}^{3}} \right|\)=\( \left | {(-1)}^3 \right | \)=\( \left | -1 \right |=1 \) .
B
\( \large x=0\)
Hint:
\( \left| {{(0+2)}^{3}} \right|\)=\( \left | {2}^3 \right | \)=\( \left | 8 \right | \) =\( 8\)
C
\( \large x=-4\)
Hint:
\( \left| {{(-4+2)}^{3}} \right|\)=\( \left | {(-2)}^3 \right | \)=\( \left | -8 \right | \) =\( 8\)
D
\( \large x=1\)
Hint:
\( \left| {{(1+2)}^{3}} \right|\)=\( \left | {3}^3 \right | \)=\( \left | 27 \right | \) = \(27\)
Question 36 Explanation: 
Topics: Laws of exponents, order of operations, interpret absolute value (Objective 0019).
Question 37

Kendra is trying to decide which fraction is greater, \(  \dfrac{4}{7}\) or \(  \dfrac{5}{8}\). Which of the following answers shows the best reasoning?

A

\( \dfrac{4}{7}\) is \( \dfrac{3}{7}\)away from 1, and \( \dfrac{5}{8}\) is \( \dfrac{3}{8}\)away from 1. Since eighth‘s are smaller than seventh‘s, \( \dfrac{5}{8}\) is closer to 1, and is the greater of the two fractions.

B

\( 7-4=3\) and \( 8-5=3\), so the fractions are equal.

Hint:
Not how to compare fractions. By this logic, 1/2 and 3/4 are equal, but 1/2 and 2/4 are not.
C

\( 4\times 8=32\) and \( 7\times 5=35\). Since \( 32<35\) , \( \dfrac{5}{8}<\dfrac{4}{7}\)

Hint:
Starts out as something that works, but the conclusion is wrong. 4/7 = 32/56 and 5/8 = 35/56. The cross multiplication gives the numerators, and 35/56 is bigger.
D

\( 4<5\) and \( 7<8\), so \( \dfrac{4}{7}<\dfrac{5}{8}\)

Hint:
Conclusion is correct, logic is wrong. With this reasoning, 1/2 would be less than 2/100,000.
Question 37 Explanation: 
Topics: Comparing fractions, and understanding the meaning of fractions (Objective 0017).
Question 38

In the triangle below, \(\overline{AC}\cong \overline{AD}\cong \overline{DE}\) and \(m\angle CAD=100{}^\circ \).  What is \(m\angle DAE\)?

A
\( \large 20{}^\circ \)
Hint:
Angles ACD and ADC are congruent since they are base angles of an isosceles triangle. Since the angles of a triangle sum to 180, they sum to 80, and they are 40 deg each. Thus angle ADE is 140 deg, since it makes a straight line with angle ADC. Angles DAE and DEA are base angles of an isosceles triangle and thus congruent-- they sum to 40 deg, so are 20 deg each.
B
\( \large 25{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
C
\( \large 30{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
D
\( \large 40{}^\circ \)
Hint:
Make sure you're calculating the correct angle.
Question 38 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles, including real-world applications. (Objective 0024).
Question 39

The window glass below has the shape of a semi-circle on top of a square, where the side of the square has length x.  It was cut from one piece of glass.

What is the perimeter of the window glass?

A
\( \large 3x+\dfrac{\pi x}{2}\)
Hint:
By definition, \(\pi\) is the ratio of the circumference of a circle to its diameter; thus the circumference is \(\pi d\). Since we have a semi-circle, its perimeter is \( \dfrac{1}{2} \pi x\). Only 3 sides of the square contribute to the perimeter.
B
\( \large 3x+2\pi x\)
Hint:
Make sure you know how to find the circumference of a circle.
C
\( \large 3x+\pi x\)
Hint:
Remember it's a semi-circle, not a circle.
D
\( \large 4x+2\pi x\)
Hint:
Only 3 sides of the square contribute to the perimeter.
Question 39 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
Question 40

The pattern below consists of a row of black squares surrounded by white squares.

 How many white squares would surround a row of 157 black squares?

A

314

Hint:
Try your procedure on a smaller number that you can count to see where you made a mistake.
B

317

Hint:
Are there ever an odd number of white squares?
C

320

Hint:
One way to see this is that there are 6 tiles on the left and right ends, and the rest of the white tiles are twice the number of black tiles (there are many other ways to look at it too).
D

322

Hint:
Try your procedure on a smaller number that you can count to see where you made a mistake.
Question 40 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic) (Objective 0021).
Question 41

The equation \( \large F=\frac{9}{5}C+32\) is used to convert a temperature measured in Celsius to the equivalent Farentheit temperature.

A patient's temperature increased by 1.5° Celcius.  By how many degrees Fahrenheit did her temperature increase?

A

1.5°

Hint:
Celsius and Fahrenheit don't increase at the same rate.
B

1.8°

Hint:
That's how much the Fahrenheit temp increases when the Celsius temp goes up by 1 degree.
C

2.7°

Hint:
Each degree increase in Celsius corresponds to a \(\dfrac{9}{5}=1.8\) degree increase in Fahrenheit. Thus the increase is 1.8+0.9=2.7.
D

Not enough information.

Hint:
A linear equation has constant slope, which means that every increase of the same amount in one variable, gives a constant increase in the other variable. It doesn't matter what temperature the patient started out at.
Question 41 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 42

Cell phone plan A charges $3 per month plus $0.10 per minute. Cell phone plan B charges $29.99 per month, with no fee for the first 400 minutes and then $0.20 for each additional minute.

Which equation can be used to solve for the number of minutes, m (with m>400) that a person would have to spend on the phone each month in order for the bills for plan A and plan B to be equal?

A
\( \large 3.10m=400+0.2m\)
Hint:
These are the numbers in the problem, but this equation doesn't make sense. If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
B
\( \large 3+0.1m=29.99+.20m\)
Hint:
Doesn't account for the 400 free minutes.
C
\( \large 3+0.1m=400+29.99+.20(m-400)\)
Hint:
Why would you add 400 minutes and $29.99? If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
D
\( \large 3+0.1m=29.99+.20(m-400)\)
Hint:
The left side is $3 plus $0.10 times the number of minutes. The right is $29.99 plus $0.20 times the number of minutes over 400.
Question 42 Explanation: 
Identify variables and derive algebraic expressions that represent real-world situations (Objective 0020).
Question 43

What is the probability that two randomly selected people were born on the same day of the week?  Assume that all days are equally probable.

A
\( \large \dfrac{1}{7}\)
Hint:
It doesn't matter what day the first person was born on. The probability that the second person will match is 1/7 (just designate one person the first and the other the second). Another way to look at it is that if you list the sample space of all possible pairs, e.g. (Wed, Sun), there are 49 such pairs, and 7 of them are repeats of the same day, and 7/49=1/7.
B
\( \large \dfrac{1}{14}\)
Hint:
What would be the sample space here? Ie, how would you list 14 things that you pick one from?
C
\( \large \dfrac{1}{42}\)
Hint:
If you wrote the seven days of the week on pieces of paper and put the papers in a jar, this would be the probability that the first person picked Sunday and the second picked Monday from the jar -- not the same situation.
D
\( \large \dfrac{1}{49}\)
Hint:
This is the probability that they are both born on a particular day, e.g. Sunday.
Question 43 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 44

Each individual cube that makes up the rectangular solid depicted below has 6 inch sides.  What is the surface area of the solid in square feet?

 
A
\( \large 11\text{ f}{{\text{t}}^{2}}\)
Hint:
Check your units and make sure you're using feet and inches consistently.
B
\( \large 16.5\text{ f}{{\text{t}}^{2}}\)
Hint:
Each square has surface area \(\dfrac{1}{2} \times \dfrac {1}{2}=\dfrac {1}{4}\) sq feet. There are 9 squares on the top and bottom, and 12 on each of 4 sides, for a total of 66 squares. 66 squares \(\times \dfrac {1}{4}\) sq feet/square =16.5 sq feet.
C
\( \large 66\text{ f}{{\text{t}}^{2}}\)
Hint:
The area of each square is not 1.
D
\( \large 2376\text{ f}{{\text{t}}^{2}}\)
Hint:
Read the question more carefully -- the answer is supposed to be in sq feet, not sq inches.
Question 44 Explanation: 
Topics: Use unit conversions to solve measurement problems, and derive and use formulas for calculating surface areas of geometric shapes and figures (Objective 0023).
Question 45

A family went on a long car trip.  Below is a graph of how far they had driven at each hour.

Which of the following is closest to their average speed driving on the trip?

 
A
\( \large d=20t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
B
\( \large d=30t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
C
\( \large d=40t\)
D
\( \large d=50t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
Question 45 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 45 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
2122232425
2627282930
3132333435
3637383940
4142434445
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.