Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

A biology class requires a lab fee, which is a whole number of dollars, and the same amount for all students. On Monday the instructor collected $70 in fees, on Tuesday she collected $126, and on Wednesday she collected $266. What is the largest possible amount the fee could be?

A

$2

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
B

$7

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
C

$14

Hint:
This is the greatest common factor of 70, 126, and 266.
D

$70

Hint:
Not a factor of 126 or 266, so couldn't be correct.
Question 1 Explanation: 
Topic: Use GCF in real-world context (Objective 0018)
Question 2

If two fair coins are flipped, what is the probability that one will come up heads and the other tails?

A
\( \large \dfrac{1}{4}\)
Hint:
Think of the coins as a penny and a dime, and list all possibilities.
B
\( \large \dfrac{1}{3} \)
Hint:
This is a very common misconception. There are three possible outcomes -- both heads, both tails, and one of each -- but they are not equally likely. Think of the coins as a penny and a dime, and list all possibilities.
C
\( \large \dfrac{1}{2}\)
Hint:
The possibilities are HH, HT, TH, TT, and all are equally likely. Two of the four have one of each coin, so the probability is 2/4=1/2.
D
\( \large \dfrac{3}{4}\)
Hint:
Think of the coins as a penny and a dime, and list all possibilities.
Question 2 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 3

What is the least common multiple of 540 and 216?

A
\( \large{{2}^{5}}\cdot {{3}^{6}}\cdot 5\)
Hint:
This is the product of the numbers, not the LCM.
B
\( \large{{2}^{3}}\cdot {{3}^{3}}\cdot 5\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then for each prime that's a factor of either number, use the largest exponent that appears in one of the factorizations. You can also take the product of the two numbers divided by their GCD.
C
\( \large{{2}^{2}}\cdot {{3}^{3}}\cdot 5\)
Hint:
216 is a multiple of 8.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\cdot {{5}^{2}}\)
Hint:
Not a multiple of 216 and not a multiple of 540.
Question 3 Explanation: 
Topic: Find the least common multiple of a set of numbers (Objective 0018).
Question 4

The picture below represents a board with pegs on it, where the closest distance between two pegs is 1 cm.  What is the area of the pentagon shown?

A
\( \large 8\text{ c}{{\text{m}}^{2}} \)
Hint:
Don't just count the dots inside, that doesn't give the area. Try adding segments so that the slanted lines become the diagonals of rectangles.
B
\( \large 11\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
C
\( \large 11.5\text{ c}{{\text{m}}^{2}}\)
Hint:
An easy way to do this problem is to use Pick's Theorem (of course, it's better if you understand why Pick's theorem works): area = # pegs inside + half # pegs on the border - 1. In this case 8+9/2-1=11.5. A more appropriate strategy for elementary classrooms is to add segments; here's one way.

There are 20 1x1 squares enclosed, and the total area of the triangles that need to be subtracted is 8.5
D
\( \large 12.5\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
Question 4 Explanation: 
Topics: Calculate measurements and derive and use formulas for calculating the areas of geometric shapes and figures (Objective 0023).
Question 5

The column below consists of two cubes and a cylinder.  The cylinder has diameter y, which is also the length of the sides of each cube.   The total height of the column is 5y.  Which of the formulas below gives the volume of the column?

 
A
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{4}\)
Hint:
The cubes each have volume \(y^3\). The cylinder has radius \(\dfrac{y}{2}\) and height \(3y\). The volume of a cylinder is \(\pi r^2 h=\pi ({\dfrac{y}{2}})^2(3y)=\dfrac{3\pi {{y}^{3}}}{4}\). Note that the volume of a cylinder is analogous to that of a prism -- area of the base times height.
B
\( \large 2{{y}^{3}}+3\pi {{y}^{3}}\)
Hint:
y is the diameter of the circle, not the radius.
C
\( \large {{y}^{3}}+5\pi {{y}^{3}}\)
Hint:
Don't forget to count both cubes.
D
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{8}\)
Hint:
Make sure you know how to find the volume of a cylinder.
Question 5 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
Question 6

Here is a number trick:

 1) Pick a whole number

 2) Double your number.

 3) Add 20 to the above result.

 4) Multiply the above by 5

 5) Subtract 100

 6) Divide by 10

The result is always the number that you started with! Suppose you start by picking N. Which of the equations below best demonstrates that the result after Step 6 is also N?

A
\( \large N*2+20*5-100\div 10=N\)
Hint:
Use parentheses or else order of operations is off.
B
\( \large \left( \left( 2*N+20 \right)*5-100 \right)\div 10=N\)
C
\( \large \left( N+N+20 \right)*5-100\div 10=N\)
Hint:
With this answer you would subtract 10, instead of subtracting 100 and then dividing by 10.
D
\( \large \left( \left( \left( N\div 10 \right)-100 \right)*5+20 \right)*2=N\)
Hint:
This answer is quite backwards.
Question 6 Explanation: 
Topic: Recognize and apply the concepts of variable, function, equality, and equation to express relationships algebraically (Objective 0020).
Question 7

There are 15 students for every teacher.  Let t represent the number of teachers and let s represent the number of students.  Which of the following equations is correct?

A
\( \large t=s+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
B
\( \large s=t+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
C
\( \large t=15s\)
Hint:
This is a really easy mistake to make, which comes from transcribing directly from English, "1 teachers equals 15 students." To see that it's wrong, plug in s=2; do you really need 30 teachers for 2 students? To avoid this mistake, insert the word "number," "Number of teachers equals 15 times number of students" is more clearly problematic.
D
\( \large s=15t\)
Question 7 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Question 8

Here is a method that a student used for subtraction:

Which of the following is correct?

A

The student used a method that worked for this problem and can be generalized to any subtraction problem.

Hint:
Note that this algorithm is taught as the "standard" algorithm in much of Europe (it's where the term "borrowing" came from -- you borrow on top and "pay back" on the bottom).
B

The student used a method that worked for this problem and that will work for any subtraction problem that only requires one regrouping; it will not work if more regrouping is required.

Hint:
Try some more examples.
C

The student used a method that worked for this problem and will work for all three-digit subtraction problems, but will not work for larger problems.

Hint:
Try some more examples.
D

The student used a method that does not work. The student made two mistakes that cancelled each other out and was lucky to get the right answer for this problem.

Hint:
Remember, there are many ways to do subtraction; there is no one "right" algorithm.
Question 8 Explanation: 
Topic: Analyze and justify standard and non-standard computational techniques (Objective 0019).
Question 9

Below are four inputs and outputs for a function machine representing the function A:

Which of the following equations could also represent A  for the values shown?

A
\( \large A(n)=n+4\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= -1 would output 3, not 0 as the machine does.
B
\( \large A(n)=n+2\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 4, not 6 as the machine does.
C
\( \large A(n)=2n+2\)
Hint:
Simply plug in each of the four function machine input values, and see that the equation produces the correct output, e.g. A(2)=6, A(-1)=0, etc.
D
\( \large A(n)=2\left( n+2 \right)\)
Hint:
For a question like this, you don't have to find the equation yourself, you can just try plugging the function machine inputs into the equation, and see if any values come out wrong. With this equation n= 2 would output 8, not 6 as the machine does.
Question 9 Explanation: 
Topics: Understand various representations of functions, and translate among different representations of functional relationships (Objective 0021).
Question 10

Use the graph below to answer the question that follows:

The graph above represents the equation \( \large 3x+Ay=B\), where A and B are integers.  What are the values of A and B?

A
\( \large A = -2, B= 6\)
Hint:
Plug in (2,0) to get B=6, then plug in (0,-3) to get A=-2.
B
\( \large A = 2, B = 6\)
Hint:
Try plugging (0,-3) into this equation.
C
\( \large A = -1.5, B=-3\)
Hint:
The problem said that A and B were integers and -1.5 is not an integer. Don't try to use slope-intercept form.
D
\( \large A = 2, B = -3\)
Hint:
Try plugging (2,0) into this equation.
Question 10 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 11

In January 2011, the national debt was about 14 trillion dollars and the US population was about 300 million people.  Someone reading these figures estimated that the national debt was about $5,000 per person.   Which of these statements best describes the reasonableness of this estimate?

A

It is too low by a factor of 10

Hint:
14 trillion \( \approx 15 \times {{10}^{12}} \) and 300 million \( \approx 3 \times {{10}^{8}}\), so the true answer is about \( 5 \times {{10}^{4}} \) or $50,000.
B

It is too low by a factor of 100

C

It is too high by a factor of 10

D

It is too high by a factor of 100

Question 11 Explanation: 
Topics: Estimation, Scientific Notation in the real world (Objective 0016).
Question 12

A publisher prints a series of books with covers made of identical material and using the same thickness of paper for each page.  The covers of the book together are 0.4 cm thick, and 125 pieces of the paper used together are 1 cm thick.

The publisher uses a linear function to determine the total thickness, T(n) of a book made with n sheets of paper.   What are the slope and intercept of T(n)?

A

Intercept = 0.4 cm, Slope = 125 cm/page

Hint:
This would mean that each page of the book was 125 cm thick.
B

Intercept =0.4 cm, Slope = \(\dfrac{1}{125}\)cm/page

Hint:
The intercept is how thick the book would be with no pages in it. The slope is how much 1 extra page adds to the thickness of the book.
C

Intercept = 125 cm, Slope = 0.4 cm

Hint:
This would mean that with no pages in the book, it would be 125 cm thick.
D

Intercept = \(\dfrac{1}{125}\)cm, Slope = 0.4 pages/cm

Hint:
This would mean that each new page of the book made it 0.4 cm thicker.
Question 12 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 13

Some children explored the diagonals in 2 x 2 squares on pages of a calendar (where all four squares have numbers in them).  They conjectured that the sum of the diagonals is always equal; in the example below, 8+16=9+15.

 

Which of the equations below could best be used to explain why the children's conjecture is correct?

A
\( \large 8x+16x=9x+15x\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
B
\( \large x+(x+2)=(x+1)+(x+1)\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
C
\( \large x+(x+8)=(x+1)+(x+7)\)
Hint:
x is the number in the top left square, x+8 is one below and to the right, x+1 is to the right of x, and x+7 is below x.
D
\( \large x+8+16=x+9+15\)
Hint:
What would x represent in this case? Make sure you can describe in words what x represents.
Question 13 Explanation: 
Topic: Recognize and apply the concepts of variable, equality, and equation to express relationships algebraically (Objective 0020).
Question 14

Each individual cube that makes up the rectangular solid depicted below has 6 inch sides.  What is the surface area of the solid in square feet?

 
A
\( \large 11\text{ f}{{\text{t}}^{2}}\)
Hint:
Check your units and make sure you're using feet and inches consistently.
B
\( \large 16.5\text{ f}{{\text{t}}^{2}}\)
Hint:
Each square has surface area \(\dfrac{1}{2} \times \dfrac {1}{2}=\dfrac {1}{4}\) sq feet. There are 9 squares on the top and bottom, and 12 on each of 4 sides, for a total of 66 squares. 66 squares \(\times \dfrac {1}{4}\) sq feet/square =16.5 sq feet.
C
\( \large 66\text{ f}{{\text{t}}^{2}}\)
Hint:
The area of each square is not 1.
D
\( \large 2376\text{ f}{{\text{t}}^{2}}\)
Hint:
Read the question more carefully -- the answer is supposed to be in sq feet, not sq inches.
Question 14 Explanation: 
Topics: Use unit conversions to solve measurement problems, and derive and use formulas for calculating surface areas of geometric shapes and figures (Objective 0023).
Question 15

How many lines of reflective symmetry and how many centers of rotational symmetry does the parallelogram depicted below have?

 
A

4 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
B

2 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
C

0 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
The intersection of the diagonals is a center of rotational symmetry. There are no lines of reflective symmetry, although many people get confused about this fact (best to play with hands on examples to get a feel). Just fyi, the letter S also has rotational, but not reflective symmetry, and it's one that kids often write backwards.
D

2 lines of reflective symmetry, 0 centers of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper. Trace onto another sheet of paper. See if there's a way to rotate the cut out shape (less than a complete turn) so that it fits within the outlines again.
Question 15 Explanation: 
Topic: Analyze geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry (Objective 0024).
Question 16

Use the solution procedure below to answer the question that follows:

\( \large {\left( x+3 \right)}^{2}=10\)

\( \large \left( x+3 \right)\left( x+3 \right)=10\)

\( \large {x}^{2}+9=10\)

\( \large {x}^{2}+9-9=10-9\)

\( \large {x}^{2}=1\)

\( \large x=1\text{ or }x=-1\)

Which of the following is incorrect in the procedure shown above?

A

The commutative property is used incorrectly.

Hint:
The commutative property is \(a+b=b+a\) or \(ab=ba\).
B

The associative property is used incorrectly.

Hint:
The associative property is \(a+(b+c)=(a+b)+c\) or \(a \times (b \times c)=(a \times b) \times c\).
C

Order of operations is done incorrectly.

D

The distributive property is used incorrectly.

Hint:
\((x+3)(x+3)=x(x+3)+3(x+3)\)=\(x^2+3x+3x+9.\)
Question 16 Explanation: 
Topic: Justify algebraic manipulations by application of the properties of equality, the order of operations, the number properties, and the order properties (Objective 0020).
Question 17

Which of the graphs below represent functions?

I. II. III. IV.   
A

I and IV only.

Hint:
There are vertical lines that go through 2 points in IV .
B

I and III only.

Hint:
Even though III is not continuous, it's still a function (assuming that vertical lines between the "steps" do not go through 2 points).
C

II and III only.

Hint:
Learn about the vertical line test.
D

I, II, and IV only.

Hint:
There are vertical lines that go through 2 points in II.
Question 17 Explanation: 
Understand the definition of function and various representations of functions (e.g., input/output machines, tables, graphs, mapping diagrams, formulas). (Objective 0021).
Question 18

The "houses" below are made of toothpicks and gum drops.

Which of the following does not represent the number of gumdrops in a row of h houses?

A
\( \large 2+3h\)
Hint:
Think of this as start with 2 gumdrops on the left wall, and then add 3 gumdrops for each house.
B
\( \large 5+3(h-1)\)
Hint:
Think of this as start with one house, and then add 3 gumdrops for each of the other h-1 houses.
C
\( \large h+(h+1)+(h+1)\)
Hint:
Look at the gumdrops in 3 rows: h gumdrops for the "rooftops," h+1 for the tops of the vertical walls, and h+1 for the floors.
D
\( \large 5+3h\)
Hint:
This one is not a correct equation (which makes it the correct answer!). Compare to choice A. One of them has to be wrong, as they differ by 3.
Question 18 Explanation: 
Topic: Translate among different representations (e.g., tables, graphs, algebraic expressions, verbal descriptions) of functional relationships (Objective 0021).
Question 19

Cell phone plan A charges $3 per month plus $0.10 per minute. Cell phone plan B charges $29.99 per month, with no fee for the first 400 minutes and then $0.20 for each additional minute.

Which equation can be used to solve for the number of minutes, m (with m>400) that a person would have to spend on the phone each month in order for the bills for plan A and plan B to be equal?

A
\( \large 3.10m=400+0.2m\)
Hint:
These are the numbers in the problem, but this equation doesn't make sense. If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
B
\( \large 3+0.1m=29.99+.20m\)
Hint:
Doesn't account for the 400 free minutes.
C
\( \large 3+0.1m=400+29.99+.20(m-400)\)
Hint:
Why would you add 400 minutes and $29.99? If you don't know how to make an equation, try plugging in an easy number like m=500 minutes to see if each side equals what it should.
D
\( \large 3+0.1m=29.99+.20(m-400)\)
Hint:
The left side is $3 plus $0.10 times the number of minutes. The right is $29.99 plus $0.20 times the number of minutes over 400.
Question 19 Explanation: 
Identify variables and derive algebraic expressions that represent real-world situations (Objective 0020).
Question 20

The histogram below shows the frequency of a class's scores on a 4 question quiz.

What was the mean score on the quiz?

A
\( \large 2.75\)
Hint:
There were 20 students who took the quiz. Total points earned: \(2 \times 1+6 \times 2+ 7\times 3+5 \times 4=55\), and 55/20 = 2.75.
B
\( \large 2\)
Hint:
How many students are there total? Did you count them all?
C
\( \large 3\)
Hint:
How many students are there total? Did you count them all? Be sure you're finding the mean, not the median or the mode.
D
\( \large 2.5\)
Hint:
How many students are there total? Did you count them all? Don't just take the mean of 1, 2, 3, 4 -- you have to weight them properly.
Question 20 Explanation: 
Topics: Analyze and interpret various graphic representations, and use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 21

Which of the numbers below is the decimal equivalent of \( \dfrac{3}{8}?\)

A

0.38

Hint:
If you are just writing the numerator next to the denominator then your technique is way off, but by coincidence your answer is close; try with 2/3 and 0.23 is nowhere near correct.
B

0.125

Hint:
This is 1/8, not 3/8.
C

0.375

D

0.83

Hint:
3/8 is less than a half, and 0.83 is more than a half, so they can't be equal.
Question 21 Explanation: 
Topic: Converting between fractions and decimals (Objective 0017)
Question 22

The speed of sound in dry air at 68 degrees F is 343.2 meters per second.  Which of the expressions below could be used to compute the number of kilometers that a sound wave travels in 10 minutes (in dry air at 68 degrees F)?

A
\( \large 343.2\times 60\times 10\)
Hint:
In kilometers, not meters.
B
\( \large 343.2\times 60\times 10\times \dfrac{1}{1000}\)
Hint:
Units are meters/sec \(\times\) seconds/minute \(\times\) minutes \(\times\) kilometers/meter, and the answer is in kilometers.
C
\( \large 343.2\times \dfrac{1}{60}\times 10\)
Hint:
Include units and make sure answer is in kilometers.
D
\( \large 343.2\times \dfrac{1}{60}\times 10\times \dfrac{1}{1000}\)
Hint:
Include units and make sure answer is in kilometers.
Question 22 Explanation: 
Topic: Use unit conversions and dimensional analysis to solve measurement problems (Objective 0023).
Question 23

Use the expression below to answer the question that follows.

                 \(\large \dfrac{\left( 155 \right)\times \left( 6,124 \right)}{977}\)

Which of the following is the best estimate of the expression above?

A

100

Hint:
6124/977 is approximately 6.
B

200

Hint:
6124/977 is approximately 6.
C

1,000

Hint:
6124/977 is approximately 6. 155 is approximately 150, and \( 6 \times 150 = 3 \times 300 = 900\), so this answer is closest.
D

2,000

Hint:
6124/977 is approximately 6.
Question 23 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016).
Question 24

A solution requires 4 ml of saline for every 7 ml of medicine. How much saline would be required for 50 ml of medicine?

A
\( \large 28 \dfrac{4}{7}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. The extra ml of saline requires 4 ml saline/ 7 ml medicine = 4/7 ml saline per 1 ml medicine.
B
\( \large 28 \dfrac{1}{4}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
C
\( \large 28 \dfrac{1}{7}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
D
\( \large 87.5\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
Question 24 Explanation: 
Topic: Apply proportional thinking to estimate quantities in real world situations (Objective 0019).
Question 25

In the triangle below, \(\overline{AC}\cong \overline{AD}\cong \overline{DE}\) and \(m\angle CAD=100{}^\circ \).  What is \(m\angle DAE\)?

A
\( \large 20{}^\circ \)
Hint:
Angles ACD and ADC are congruent since they are base angles of an isosceles triangle. Since the angles of a triangle sum to 180, they sum to 80, and they are 40 deg each. Thus angle ADE is 140 deg, since it makes a straight line with angle ADC. Angles DAE and DEA are base angles of an isosceles triangle and thus congruent-- they sum to 40 deg, so are 20 deg each.
B
\( \large 25{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
C
\( \large 30{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
D
\( \large 40{}^\circ \)
Hint:
Make sure you're calculating the correct angle.
Question 25 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles, including real-world applications. (Objective 0024).
Question 26

Which of the following is the equation of a linear function?

A
\( \large y={{x}^{2}}+2x+7\)
Hint:
This is a quadratic function.
B
\( \large y={{2}^{x}}\)
Hint:
This is an exponential function.
C
\( \large y=\dfrac{15}{x}\)
Hint:
This is an inverse function.
D
\( \large y=x+(x+4)\)
Hint:
This is a linear function, y=2x+4, it's graph is a straight line with slope 2 and y-intercept 4.
Question 26 Explanation: 
Topic: Distinguish between linear and nonlinear functions (Objective 0022).
Question 27

Use the expression below to answer the question that follows.

      \( \large 3\times {{10}^{4}}+2.2\times {{10}^{2}}\)

Which of the following is closest to the expression above?

A

Five million

Hint:
Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values.
B

Fifty thousand

Hint:
Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values.
C

Three million

Hint:
Don't add the exponents.
D

Thirty thousand

Hint:
\( 3\times {{10}^{4}} = 30,000;\) the other term is much smaller and doesn't change the estimate.
Question 27 Explanation: 
Topics: Place value, scientific notation, estimation (Objective 0016)
Question 28

A homeowner is planning to tile the kitchen floor with tiles that measure 6 inches by 8 inches.  The kitchen floor is a rectangle that measures 10 ft by 12 ft, and there are no gaps between the tiles.  How many tiles does the homeowner need?

A

30

Hint:
The floor is 120 sq feet, and the tiles are smaller than 1 sq foot. Also, remember that 1 sq foot is 12 \(\times\) 12=144 sq inches.
B

120

Hint:
The floor is 120 sq feet, and the tiles are smaller than 1 sq foot.
C

300

Hint:
Recheck your calculations.
D

360

Hint:
One way to do this is to note that 6 inches = 1/2 foot and 8 inches = 2/3 foot, so the area of each tile is 1/2 \(\times\) 2/3=1/3 sq foot, or each square foot of floor requires 3 tiles. The area of the floor is 120 square feet. Note that the tiles would fit evenly oriented in either direction, parallel to the walls.
Question 28 Explanation: 
Topic: Estimate and calculate measurements, use unit conversions to solve measurement problems, solve measurement problems in real-world situations (Objective 0023).
Question 29

Which of the following sets of polygons can be assembled to form a pentagonal pyramid?

A

2 pentagons and 5 rectangles.

Hint:
These can be assembled to form a pentagonal prism, not a pentagonal pyramid.
B

1 square and 5 equilateral triangles.

Hint:
You need a pentagon for a pentagonal pyramid.
C

1 pentagon and 5 isosceles triangles.

D

1 pentagon and 10 isosceles triangles.

Question 29 Explanation: 
Topic:Classify and analyze three-dimensional figures using attributes of faces, edges, and vertices (Objective 0024).
Question 30

Which of the following is closest to the height of a college student in centimeters?

A

1.6 cm

Hint:
This is more the height of a Lego toy college student -- less than an inch!
B

16 cm

Hint:
Less than knee high on most college students.
C

160 cm

Hint:
Remember, a meter stick (a little bigger than a yard stick) is 100 cm. Also good to know is that 4 inches is approximately 10 cm.
D

1600 cm

Hint:
This college student might be taller than some campus buildings!
Question 30 Explanation: 
Topic: Estimate and calculate measurements using customary, metric, and nonstandard units of measurement (Objective 0023).
Question 31

Which of the following is not possible?

A

An equiangular triangle that is not equilateral.

Hint:
The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral.
B

An equiangular quadrilateral that is not equilateral.

Hint:
A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length).
C

An equilateral quadrilateral that is not equiangular.

Hint:
This rhombus has equal sides, but it doesn't have equal angles:
D

An equiangular hexagon that is not equilateral.

Hint:
This hexagon has equal angles, but it doesn't have equal sides:
Question 31 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles (Objective 0024).
Question 32

The least common multiple of 60 and N is 1260. Which of the following could be the prime factorization of N?

A
\( \large2\cdot 5\cdot 7\)
Hint:
1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM.
B
\( \large{{2}^{3}}\cdot {{3}^{2}}\cdot 5 \cdot 7\)
Hint:
1260 is not divisible by 8, so it isn't a multiple of this N.
C
\( \large3 \cdot 5 \cdot 7\)
Hint:
1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM.
D
\( \large{{3}^{2}}\cdot 5\cdot 7\)
Hint:
\(1260=2^2 \cdot 3^2 \cdot 5 \cdot 7\) and \(60=2^2 \cdot 3 \cdot 5\). In order for 1260 to be the LCM, N has to be a multiple of \(3^2\) and of 7 (because 60 is not a multiple of either of these). N also cannot introduce a factor that would require the LCM to be larger (as in choice b).
Question 32 Explanation: 
Topic: Least Common Multiple (Objective 0018)
Question 33

What is the probability that two randomly selected people were born on the same day of the week?  Assume that all days are equally probable.

A
\( \large \dfrac{1}{7}\)
Hint:
It doesn't matter what day the first person was born on. The probability that the second person will match is 1/7 (just designate one person the first and the other the second). Another way to look at it is that if you list the sample space of all possible pairs, e.g. (Wed, Sun), there are 49 such pairs, and 7 of them are repeats of the same day, and 7/49=1/7.
B
\( \large \dfrac{1}{14}\)
Hint:
What would be the sample space here? Ie, how would you list 14 things that you pick one from?
C
\( \large \dfrac{1}{42}\)
Hint:
If you wrote the seven days of the week on pieces of paper and put the papers in a jar, this would be the probability that the first person picked Sunday and the second picked Monday from the jar -- not the same situation.
D
\( \large \dfrac{1}{49}\)
Hint:
This is the probability that they are both born on a particular day, e.g. Sunday.
Question 33 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 34

A car is traveling at 60 miles per hour.  Which of the expressions below could be used to compute how many feet the car travels in 1 second?  Note that 1 mile = 5,280 feet.

A
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot 60\dfrac{\text{seconds}}{\text{minute}} \)
Hint:
This answer is not in feet/second.
B
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot \dfrac{1}{60}\dfrac{\text{hour}}{\text{minutes}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}} \)
Hint:
This is the only choice where the answer is in feet per second and the unit conversions are correct.
C
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{foot}}{\text{miles}}\cdot 60\dfrac{\text{hours}}{\text{minute}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}\)
Hint:
Are there really 60 hours in a minute?
D
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{mile}}{\text{feet}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}\)
Hint:
This answer is not in feet/second.
Question 34 Explanation: 
Topic: Use unit conversions and dimensional analysis to solve measurement problems (Objective 0023).
Question 35

The expression \( \large{{8}^{3}}\cdot {{2}^{-10}}\) is equal to which of the following?

A
\( \large 2\)
Hint:
Write \(8^3\) as a power of 2.
B
\( \large \dfrac{1}{2}\)
Hint:
\(8^3 \cdot {2}^{-10}={(2^3)}^3 \cdot {2}^{-10}\) =\(2^9 \cdot {2}^{-10} =2^{-1}\)
C
\( \large 16\)
Hint:
Write \(8^3\) as a power of 2.
D
\( \large \dfrac{1}{16}\)
Hint:
Write \(8^3\) as a power of 2.
Question 35 Explanation: 
Topic: Laws of Exponents (Objective 0019).
Question 36

The following story situations model \( 12\div 3\):

I)  Jack has 12 cookies, which he wants to share equally between himself and two friends.  How many cookies does each person get?

II) Trent has 12 cookies, which he wants to put into bags of 3 cookies each.  How many bags can he make?

III) Cicely has $12.  Cookies cost $3 each.  How many cookies can she buy?

Which of these questions illustrate the same model of division, either partitive (partioning) or measurement (quotative)?

A

I and II

B

I and III

C

II and III

Hint:
Problem I is partitive (or partitioning or sharing) -- we put 12 objects into 3 groups. Problems II and III are quotative (or measurement) -- we put 12 objects in groups of 3.
D

All three problems model the same meaning of division

Question 36 Explanation: 
Topic: Understand models of operations on numbers (Objective 0019).
Question 37

A family went on a long car trip.  Below is a graph of how far they had driven at each hour.

Which of the following is closest to their average speed driving on the trip?

 
A
\( \large d=20t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
B
\( \large d=30t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
C
\( \large d=40t\)
D
\( \large d=50t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
Question 37 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Question 38

Here are some statements:

I) 5 is an integer    II)\( -5 \)  is an integer    III) \(0\) is an integer

Which of the statements are true?

A

I only

B

I and II only

C

I and III only

D

I, II, and III

Hint:
The integers are ...-3, -2, -1, 0, 1, 2, 3, ....
Question 38 Explanation: 
Topic: Characteristics of Integers (Objective 0016)
Question 39

A teacher has a list of all the countries in the world and their populations in March 2012.  She is going to have her students use technology to compute the mean and median of the numbers on the list.   Which of the following statements is true?

A

The teacher can be sure that the mean and median will be the same without doing any computation.

Hint:
Does this make sense? How likely is it that the mean and median of any large data set will be the same?
B

The teacher can be sure that the mean is bigger than the median without doing any computation.

Hint:
This is a skewed distribution, and very large countries like China and India contribute huge numbers to the mean, but are counted the same as small countries like Luxembourg in the median (the same thing happens w/data on salaries, where a few very high income people tilt the mean -- that's why such data is usually reported as medians).
C

The teacher can be sure that the median is bigger than the mean without doing any computation.

Hint:
Think about a set of numbers like 1, 2, 3, 4, 10,000 -- how do the mean/median compare? How might that relate to countries of the world?
D

There is no way for the teacher to know the relative size of the mean and median without computing them.

Hint:
Knowing the shape of the distribution of populations does give us enough info to know the relative size of the mean and median, even without computing them.
Question 39 Explanation: 
Topic: Use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 40

Exactly one of the numbers below is a prime number.  Which one is it?

A
\( \large511 \)
Hint:
Divisible by 7.
B
\( \large517\)
Hint:
Divisible by 11.
C
\( \large519\)
Hint:
Divisible by 3.
D
\( \large521\)
Question 40 Explanation: 
Topics: Identify prime and composite numbers and demonstrate knowledge of divisibility rules (Objective 0018).
Question 41

Which of the following values of x satisfies the inequality \( \large \left| {{(x+2)}^{3}} \right|<3?\)

A
\( \large x=-3\)
Hint:
\( \left| {{(-3+2)}^{3}} \right|\)=\( \left | {(-1)}^3 \right | \)=\( \left | -1 \right |=1 \) .
B
\( \large x=0\)
Hint:
\( \left| {{(0+2)}^{3}} \right|\)=\( \left | {2}^3 \right | \)=\( \left | 8 \right | \) =\( 8\)
C
\( \large x=-4\)
Hint:
\( \left| {{(-4+2)}^{3}} \right|\)=\( \left | {(-2)}^3 \right | \)=\( \left | -8 \right | \) =\( 8\)
D
\( \large x=1\)
Hint:
\( \left| {{(1+2)}^{3}} \right|\)=\( \left | {3}^3 \right | \)=\( \left | 27 \right | \) = \(27\)
Question 41 Explanation: 
Topics: Laws of exponents, order of operations, interpret absolute value (Objective 0019).
Question 42

Aya and Kendra want to estimate the height of a tree. On a sunny day, Aya measures Kendra's shadow as 3 meters long, and Kendra measures the tree's shadow as 15 meters long. Kendra is 1.5 meters tall. How tall is the tree?

A

7.5 meters

Hint:
Here is a picture, note that the large and small right triangles are similar:

One way to do the problem is to note that there is a dilation (scale) factor of 5 on the shadows, so there must be that factor on the heights too. Another way is to note that the shadows are twice as long as the heights.
B

22.5 meters

Hint:
Draw a picture.
C

30 meters

Hint:
Draw a picture.
D

45 meters

Hint:
Draw a picture.
Question 42 Explanation: 
Topic: Apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to similarity, ; and use these concepts to solve problems (Objective 0024) . Fits in other places too.
Question 43

Given that 10 cm is approximately equal to 4 inches, which of the following expressions models a way to find out approximately how many inches are equivalent to 350 cm?

A
\( \large 350\times \left( \dfrac{10}{4} \right)\)
Hint:
The final result should be smaller than 350, and this answer is bigger.
B
\( \large 350\times \left( \dfrac{4}{10} \right)\)
Hint:
Dimensional analysis can help here: \(350 \text{cm} \times \dfrac{4 \text{in}}{10 \text{cm}}\). The cm's cancel and the answer is in inches.
C
\( \large (10-4) \times 350 \)
Hint:
This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense.
D
\( \large (350-10) \times 4\)
Hint:
This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense.
Question 43 Explanation: 
Topic: Applying fractions to word problems (Objective 0017) This problem is similar to one on the official sample test for that objective, but it might fit better into unit conversion and dimensional analysis (Objective 0023: Measurement)
Question 44

Here is a student's work on several multiplication problems:

For which of the following problems is this student most likely to get the correct solution, even though he is using an incorrect algorithm?

A

58 x 22

Hint:
This problem involves regrouping, which the student does not do correctly.
B

16 x 24

Hint:
This problem involves regrouping, which the student does not do correctly.
C

31 x 23

Hint:
There is no regrouping with this problem.
D

141 x 32

Hint:
This problem involves regrouping, which the student does not do correctly.
Question 44 Explanation: 
Topic: Analyze computational algorithms (Objective 0019).
Question 45

At a school fundraising event, people can buy a ticket to spin a spinner like the one below.  The region that the spinner lands in tells which, if any, prize the person wins.

If 240 people buy tickets to spin the spinner, what is the best estimate of the number of keychains that will be given away?

A

40

Hint:
"Keychain" appears on the spinner twice.
B

80

Hint:
The probability of getting a keychain is 1/3, and so about 1/3 of the time the spinner will win.
C

100

Hint:
What is the probability of winning a keychain?
D

120

Hint:
That would be the answer for getting any prize, not a keychain specifically.
Question 45 Explanation: 
Topic: I would call this topic expected value, which is not listed on the objectives. This question is very similar to one on the sample test. It's not a good question in that it's oversimplified (a more difficult and interesting question would be something like, "The school bought 100 keychains for prizes, what is the probability that they will run out before 240 people play?"). In any case, I believe the objective this is meant for is, "Recognize the difference between experimentally and theoretically determined probabilities in real-world situations. (Objective 0026)." This is not something easily assessed with multiple choice .
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 45 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
2122232425
2627282930
3132333435
3637383940
4142434445
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.