Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

How many lines of reflective symmetry and how many centers of rotational symmetry does the parallelogram depicted below have?

 
A

4 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
B

2 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?
C

0 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
The intersection of the diagonals is a center of rotational symmetry. There are no lines of reflective symmetry, although many people get confused about this fact (best to play with hands on examples to get a feel). Just fyi, the letter S also has rotational, but not reflective symmetry, and it's one that kids often write backwards.
D

2 lines of reflective symmetry, 0 centers of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper. Trace onto another sheet of paper. See if there's a way to rotate the cut out shape (less than a complete turn) so that it fits within the outlines again.
Question 1 Explanation: 
Topic: Analyze geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry (Objective 0024).
Question 2

The column below consists of two cubes and a cylinder.  The cylinder has diameter y, which is also the length of the sides of each cube.   The total height of the column is 5y.  Which of the formulas below gives the volume of the column?

 
A
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{4}\)
Hint:
The cubes each have volume \(y^3\). The cylinder has radius \(\dfrac{y}{2}\) and height \(3y\). The volume of a cylinder is \(\pi r^2 h=\pi ({\dfrac{y}{2}})^2(3y)=\dfrac{3\pi {{y}^{3}}}{4}\). Note that the volume of a cylinder is analogous to that of a prism -- area of the base times height.
B
\( \large 2{{y}^{3}}+3\pi {{y}^{3}}\)
Hint:
y is the diameter of the circle, not the radius.
C
\( \large {{y}^{3}}+5\pi {{y}^{3}}\)
Hint:
Don't forget to count both cubes.
D
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{8}\)
Hint:
Make sure you know how to find the volume of a cylinder.
Question 2 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
Question 3

Which of the following is equal to eleven billion four hundred thousand?

A
\( \large 11,400,000\)
Hint:
That's eleven million four hundred thousand.
B
\(\large11,000,400,000\)
C
\( \large11,000,000,400,000\)
Hint:
That's eleven trillion four hundred thousand (although with British conventions; this answer is correct, but in the US, it isn't).
D
\( \large 11,400,000,000\)
Hint:
That's eleven billion four hundred million
Question 3 Explanation: 
Topic: Place Value (Objective 0016)
Question 4

Which of the following sets of polygons can be assembled to form a pentagonal pyramid?

A

2 pentagons and 5 rectangles.

Hint:
These can be assembled to form a pentagonal prism, not a pentagonal pyramid.
B

1 square and 5 equilateral triangles.

Hint:
You need a pentagon for a pentagonal pyramid.
C

1 pentagon and 5 isosceles triangles.

D

1 pentagon and 10 isosceles triangles.

Question 4 Explanation: 
Topic:Classify and analyze three-dimensional figures using attributes of faces, edges, and vertices (Objective 0024).
Question 5

The pattern below consists of a row of black squares surrounded by white squares.

 How many white squares would surround a row of 157 black squares?

A

314

Hint:
Try your procedure on a smaller number that you can count to see where you made a mistake.
B

317

Hint:
Are there ever an odd number of white squares?
C

320

Hint:
One way to see this is that there are 6 tiles on the left and right ends, and the rest of the white tiles are twice the number of black tiles (there are many other ways to look at it too).
D

322

Hint:
Try your procedure on a smaller number that you can count to see where you made a mistake.
Question 5 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic) (Objective 0021).
Question 6

The picture below shows identical circles drawn on a piece of paper.  The rectangle represents an index card that is blocking your view of \( \dfrac{3}{5}\) of the circles on the paper.  How many circles are covered by the rectangle?

A

4

Hint:
The card blocks more than half of the circles, so this number is too small.
B

5

Hint:
The card blocks more than half of the circles, so this number is too small.
C

8

Hint:
The card blocks more than half of the circles, so this number is too small.
D

12

Hint:
2/5 of the circles or 8 circles are showing. Thus 4 circles represent 1/5 of the circles, and \(4 \times 5=20\) circles represent 5/5 or all the circles. Thus 12 circles are hidden.
Question 6 Explanation: 
Topic: Models of Fractions (Objective 0017)
Question 7

Given that 10 cm is approximately equal to 4 inches, which of the following expressions models a way to find out approximately how many inches are equivalent to 350 cm?

A
\( \large 350\times \left( \dfrac{10}{4} \right)\)
Hint:
The final result should be smaller than 350, and this answer is bigger.
B
\( \large 350\times \left( \dfrac{4}{10} \right)\)
Hint:
Dimensional analysis can help here: \(350 \text{cm} \times \dfrac{4 \text{in}}{10 \text{cm}}\). The cm's cancel and the answer is in inches.
C
\( \large (10-4) \times 350 \)
Hint:
This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense.
D
\( \large (350-10) \times 4\)
Hint:
This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense.
Question 7 Explanation: 
Topic: Applying fractions to word problems (Objective 0017) This problem is similar to one on the official sample test for that objective, but it might fit better into unit conversion and dimensional analysis (Objective 0023: Measurement)
Question 8

The histogram below shows the frequency of a class's scores on a 4 question quiz.

What was the mean score on the quiz?

A
\( \large 2.75\)
Hint:
There were 20 students who took the quiz. Total points earned: \(2 \times 1+6 \times 2+ 7\times 3+5 \times 4=55\), and 55/20 = 2.75.
B
\( \large 2\)
Hint:
How many students are there total? Did you count them all?
C
\( \large 3\)
Hint:
How many students are there total? Did you count them all? Be sure you're finding the mean, not the median or the mode.
D
\( \large 2.5\)
Hint:
How many students are there total? Did you count them all? Don't just take the mean of 1, 2, 3, 4 -- you have to weight them properly.
Question 8 Explanation: 
Topics: Analyze and interpret various graphic representations, and use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 9

Use the graph below to answer the question that follows.

If the polygon shown above is reflected about the y axis and then rotated 90 degrees clockwise about the origin, which of the following graphs is the result?

A
Hint:
Try following the point (1,4) to see where it goes after each transformation.
B
C
Hint:
Make sure you're reflecting in the correct axis.
D
Hint:
Make sure you're rotating the correct direction.
Question 9 Explanation: 
Topic: Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry, similarity, and congruence; and use these concepts to solve problems (Objective 0024).
Question 10

Which of the following is closest to the height of a college student in centimeters?

A

1.6 cm

Hint:
This is more the height of a Lego toy college student -- less than an inch!
B

16 cm

Hint:
Less than knee high on most college students.
C

160 cm

Hint:
Remember, a meter stick (a little bigger than a yard stick) is 100 cm. Also good to know is that 4 inches is approximately 10 cm.
D

1600 cm

Hint:
This college student might be taller than some campus buildings!
Question 10 Explanation: 
Topic: Estimate and calculate measurements using customary, metric, and nonstandard units of measurement (Objective 0023).
Question 11

Four children randomly line up, single file.  What is the probability that they are in height order, with the shortest child in front?   All of the children are different heights.

A
\( \large \dfrac{1}{4}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
B
\( \large \dfrac{1}{256} \)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
C
\( \large \dfrac{1}{16}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
D
\( \large \dfrac{1}{24}\)
Hint:
The number of ways for the children to line up is \(4!=4 \times 3 \times 2 \times 1 =24\) -- there are 4 choices for who is first in line, then 3 for who is second, etc. Only one of these lines has the children in the order specified.
Question 11 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Question 12

What set of transformations will transform the leftmost image into the rightmost image?

 
A

A 90 degree clockwise rotation about (2,1) followed by a translation of two units to the right.

Hint:
Part of the figure would move below the x-axis with these transformations.
B

A translation 3 units up, followed by a reflection about the line y=x.

Hint:
See what happens to the point (5,1) under this set of transformations.
C

A 90 degree clockwise rotation about (5,1), followed by a translation of 2 units up.

D

A 90 degree clockwise rotation about (2,1) followed by a translation of 2 units to the right.

Hint:
See what happens to the point (3,3) under this set of transformations.
Question 12 Explanation: 
Topic:Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations) (Objective 0024).
Question 13

What is the perimeter of a right triangle with legs of lengths x and 2x?

A
\( \large 6x\)
Hint:
Use the Pythagorean Theorem.
B
\( \large 3x+5{{x}^{2}}\)
Hint:
Don't forget to take square roots when you use the Pythagorean Theorem.
C
\( \large 3x+\sqrt{5}{{x}^{2}}\)
Hint:
\(\sqrt {5 x^2}\) is not \(\sqrt {5}x^2\).
D
\( \large 3x+\sqrt{5}{{x}^{{}}}\)
Hint:
To find the hypotenuse, h, use the Pythagorean Theorem: \(x^2+(2x)^2=h^2.\) \(5x^2=h^2,h=\sqrt{5}x\). The perimeter is this plus x plus 2x.
Question 13 Explanation: 
Topic: Recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
Question 14

Which of the lists below contains only irrational numbers?

A
\( \large\pi , \quad \sqrt{6},\quad \sqrt{\dfrac{1}{2}}\)
B
\( \large\pi , \quad \sqrt{9}, \quad \pi +1\)
Hint:
\( \sqrt{9}=3\)
C
\( \large\dfrac{1}{3},\quad \dfrac{5}{4},\quad \dfrac{2}{9}\)
Hint:
These are all rational.
D
\( \large-3,\quad 14,\quad 0\)
Hint:
These are all rational.
Question 14 Explanation: 
Topic: Identifying rational and irrational numbers (Objective 0016).
Question 15

The function d(x) gives the result when 12 is divided by x.  Which of the following is a graph of d(x)?

 
A
Hint:
d(x) is 12 divided by x, not x divided by 12.
B
Hint:
When x=2, what should d(x) be?
C
Hint:
When x=2, what should d(x) be?
D
Question 15 Explanation: 
Topic: Identify and analyze direct and inverse relationships in tables, graphs, algebraic expressions and real-world situations (Objective 0021)
Question 16

Which of the following is equivalent to

\( \large A-B+C\div D\times E\)?

A
\( \large A-B-\dfrac{C}{DE} \)
Hint:
In the order of operations, multiplication and division have the same priority, so do them left to right; same with addition and subtraction.
B
\( \large A-B+\dfrac{CE}{D}\)
Hint:
In practice, you're better off using parentheses than writing an expression like the one in the question. The PEMDAS acronym that many people memorize is misleading. Multiplication and division have equal priority and are done left to right. They have higher priority than addition and subtraction. Addition and subtraction also have equal priority and are done left to right.
C
\( \large \dfrac{AE-BE+CE}{D}\)
Hint:
Use order of operations, don't just compute left to right.
D
\( \large A-B+\dfrac{C}{DE}\)
Hint:
In the order of operations, multiplication and division have the same priority, so do them left to right
Question 16 Explanation: 
Topic: Justify algebraic manipulations by application of the properties of order of operations (Objective 0020).
Question 17

Use the samples of a student's work below to answer the question that follows:

This student divides fractions by first finding a common denominator, then dividing the numerators.

\( \large \dfrac{2}{3} \div \dfrac{3}{4} \longrightarrow \dfrac{8}{12} \div \dfrac{9}{12} \longrightarrow 8 \div 9 = \dfrac {8}{9}\) \( \large \dfrac{2}{5} \div \dfrac{7}{20} \longrightarrow \dfrac{8}{20} \div \dfrac{7}{20} \longrightarrow 8 \div 7 = \dfrac {8}{7}\) \( \large \dfrac{7}{6} \div \dfrac{3}{4} \longrightarrow \dfrac{14}{12} \div \dfrac{9}{12} \longrightarrow 14 \div 9 = \dfrac {14}{9}\)

Which of the following best describes the mathematical validity of the algorithm the student is using?

A

It is not valid. Common denominators are for adding and subtracting fractions, not for dividing them.

Hint:
Don't be so rigid! Usually there's more than one way to do something in math.
B

It got the right answer in these three cases, but it isn‘t valid for all rational numbers.

Hint:
Did you try some other examples? What makes you say it's not valid?
C

It is valid if the rational numbers in the division problem are in lowest terms and the divisor is not zero.

Hint:
Lowest terms doesn't affect this problem at all.
D

It is valid for all rational numbers, as long as the divisor is not zero.

Hint:
When we have common denominators, the problem is in the form a/b divided by c/b, and the answer is a/c, as the student's algorithm predicts.
Question 17 Explanation: 
Topic: Analyze Non-Standard Computational Algorithms (Objective 0019).
Question 18

A family went on a long car trip.  Below is a graph of how far they had driven at each hour.

Which of the following is closest to their average speed driving on the trip?

 
A
\( \large d=20t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
B
\( \large d=30t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
C
\( \large d=40t\)
D
\( \large d=50t\)
Hint:
Try plugging t=7 into the equation, and see how it matches the graph.
Question 18 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Question 19

Kendra is trying to decide which fraction is greater, \(  \dfrac{4}{7}\) or \(  \dfrac{5}{8}\). Which of the following answers shows the best reasoning?

A

\( \dfrac{4}{7}\) is \( \dfrac{3}{7}\)away from 1, and \( \dfrac{5}{8}\) is \( \dfrac{3}{8}\)away from 1. Since eighth‘s are smaller than seventh‘s, \( \dfrac{5}{8}\) is closer to 1, and is the greater of the two fractions.

B

\( 7-4=3\) and \( 8-5=3\), so the fractions are equal.

Hint:
Not how to compare fractions. By this logic, 1/2 and 3/4 are equal, but 1/2 and 2/4 are not.
C

\( 4\times 8=32\) and \( 7\times 5=35\). Since \( 32<35\) , \( \dfrac{5}{8}<\dfrac{4}{7}\)

Hint:
Starts out as something that works, but the conclusion is wrong. 4/7 = 32/56 and 5/8 = 35/56. The cross multiplication gives the numerators, and 35/56 is bigger.
D

\( 4<5\) and \( 7<8\), so \( \dfrac{4}{7}<\dfrac{5}{8}\)

Hint:
Conclusion is correct, logic is wrong. With this reasoning, 1/2 would be less than 2/100,000.
Question 19 Explanation: 
Topics: Comparing fractions, and understanding the meaning of fractions (Objective 0017).
Question 20

Which of the following inequalities describes all values of x  with \(\large  \dfrac{x}{2}\le \dfrac{x}{3}\)?

A
\( \large x < 0\)
Hint:
If x =0, then x/2 = x/3, so this answer can't be correct.
B
\( \large x \le 0\)
C
\( \large x > 0\)
Hint:
If x =0, then x/2 = x/3, so this answer can't be correct.
D
\( \large x \ge 0\)
Hint:
Try plugging in x = 6.
Question 20 Explanation: 
Topics: Inequalities, operations (Objective 0019) (not exactly sure how to classify, but this is like one of the problems on the official sample test).
Question 21

The "houses" below are made of toothpicks and gum drops.

Which of the following does not represent the number of gumdrops in a row of h houses?

A
\( \large 2+3h\)
Hint:
Think of this as start with 2 gumdrops on the left wall, and then add 3 gumdrops for each house.
B
\( \large 5+3(h-1)\)
Hint:
Think of this as start with one house, and then add 3 gumdrops for each of the other h-1 houses.
C
\( \large h+(h+1)+(h+1)\)
Hint:
Look at the gumdrops in 3 rows: h gumdrops for the "rooftops," h+1 for the tops of the vertical walls, and h+1 for the floors.
D
\( \large 5+3h\)
Hint:
This one is not a correct equation (which makes it the correct answer!). Compare to choice A. One of them has to be wrong, as they differ by 3.
Question 21 Explanation: 
Topic: Translate among different representations (e.g., tables, graphs, algebraic expressions, verbal descriptions) of functional relationships (Objective 0021).
Question 22

The equation \( \large F=\frac{9}{5}C+32\) is used to convert a temperature measured in Celsius to the equivalent Farentheit temperature.

A patient's temperature increased by 1.5° Celcius.  By how many degrees Fahrenheit did her temperature increase?

A

1.5°

Hint:
Celsius and Fahrenheit don't increase at the same rate.
B

1.8°

Hint:
That's how much the Fahrenheit temp increases when the Celsius temp goes up by 1 degree.
C

2.7°

Hint:
Each degree increase in Celsius corresponds to a \(\dfrac{9}{5}=1.8\) degree increase in Fahrenheit. Thus the increase is 1.8+0.9=2.7.
D

Not enough information.

Hint:
A linear equation has constant slope, which means that every increase of the same amount in one variable, gives a constant increase in the other variable. It doesn't matter what temperature the patient started out at.
Question 22 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 23

On a map the distance from Boston to Detroit is 6 cm, and these two cities are 702 miles away from each other. Assuming the scale of the map is the same throughout, which answer below is closest to the distance between Boston and San Francisco on the map, given that they are 2,708 miles away from each other?

A

21 cm

Hint:
How many miles would correspond to 24 cm on the map? Try adjusting from there.
B

22 cm

Hint:
How many miles would correspond to 24 cm on the map? Try adjusting from there.
C

23 cm

Hint:
One way to solve this without a calculator is to note that 4 groups of 6 cm is 2808 miles, which is 100 miles too much. Then 100 miles would be about 1/7 th of 6 cm, or about 1 cm less than 24 cm.
D

24 cm

Hint:
4 groups of 6 cm is over 2800 miles on the map, which is too much.
Question 23 Explanation: 
Topic: Apply proportional thinking to estimate quantities in real world situations (Objective 0019).
Question 24

Taxicab fares in Boston (Spring 2012) are $2.60 for the first \(\dfrac{1}{7}\) of a mile or less and $0.40 for each \(\dfrac{1}{7}\) of a mile after that.

Let d represent the distance a passenger travels in miles (with \(d>\dfrac{1}{7}\)). Which of the following expressions represents the total fare?

A
\( \large \$2.60+\$0.40d\)
Hint:
It's 40 cents for 1/7 of a mile, not per mile.
B
\( \large \$2.60+\$0.40\dfrac{d}{7}\)
Hint:
According to this equation, going 7 miles would cost $3; does that make sense?
C
\( \large \$2.20+\$2.80d\)
Hint:
You can think of the fare as $2.20 to enter the cab, and then $0.40 for each 1/7 of a mile, including the first 1/7 of a mile (or $2.80 per mile).

Alternatively, you pay $2.60 for the first 1/7 of a mile, and then $2.80 per mile for d-1/7 miles. The total is 2.60+2.80(d-1/7) = 2.60+ 2.80d -.40 = 2.20+2.80d.
D
\( \large \$2.60+\$2.80d\)
Hint:
Don't count the first 1/7 of a mile twice.
Question 24 Explanation: 
Topic: Identify variables and derive algebraic expressions that represent real-world situations (Objective 0020), and select the linear equation that best models a real-world situation (Objective 0022).
Question 25

Use the expression below to answer the question that follows:

                 \( \large \dfrac{\left( 7,154 \right)\times \left( 896 \right)}{216}\)

Which of the following is the best estimate of the expression above?

A

2,000

Hint:
The answer is bigger than 7,000.
B

20,000

Hint:
Estimate 896/216 first.
C

3,000

Hint:
The answer is bigger than 7,000.
D

30,000

Hint:
\( \dfrac{896}{216} \approx 4\) and \(7154 \times 4\) is over 28,000, so this answer is closest.
Question 25 Explanation: 
Topics: Estimation, simplifying fractions (Objective 0016, overlaps with other objectives).
Question 26

Use the samples of a student's work below to answer the question that follows:

\( \large \dfrac{2}{3}\times \dfrac{3}{4}=\dfrac{4\times 2}{3\times 3}=\dfrac{8}{9}\) \( \large \dfrac{2}{5}\times \dfrac{7}{7}=\dfrac{7\times 2}{5\times 7}=\dfrac{2}{5}\) \( \large \dfrac{7}{6}\times \dfrac{3}{4}=\dfrac{4\times 7}{6\times 3}=\dfrac{28}{18}=\dfrac{14}{9}\)

Which of the following best describes the mathematical validity of the algorithm the student is using?

A

It is not valid. It never produces the correct answer.

Hint:
In the middle example,the answer is correct.
B

It is not valid. It produces the correct answer in a few special cases, but it‘s still not a valid algorithm.

Hint:
Note that this algorithm gives a/b divided by c/d, not a/b x c/d, but some students confuse multiplication and cross-multiplication. If a=0 or if c/d =1, division and multiplication give the same answer.
C

It is valid if the rational numbers in the multiplication problem are in lowest terms.

Hint:
Lowest terms is irrelevant.
D

It is valid for all rational numbers.

Hint:
Can't be correct as the first and last examples have the wrong answers.
Question 26 Explanation: 
Topic: Analyze Non-Standard Computational Algorithms (Objective 0019).
Question 27

If  x  is an integer, which of the following must also be an integer?

A
\( \large \dfrac{x}{2}\)
Hint:
If x is odd, then \( \dfrac{x}{2} \) is not an integer, e.g. 3/2 = 1.5.
B
\( \large \dfrac{2}{x}\)
Hint:
Only an integer if x = -2, -1, 1, or 2.
C
\( \large-x\)
Hint:
-1 times any integer is still an integer.
D
\(\large\sqrt{x}\)
Hint:
Usually not an integer, e.g. \( \sqrt{2} \approx 1.414 \).
Question 27 Explanation: 
Topic: Integers (Objective 0016)
Question 28

Which of the following is equivalent to \(  \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}?\)

A
\( \large \dfrac{7}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
B
\( \large \dfrac{1}{2}\)
Hint:
Addition and subtraction are of equal priority in the order of operations -- do them left to right.
C
\( \large \dfrac{3}{4}\)
Hint:
\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}\)=\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}+-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}\)
D
\( \large \dfrac{3}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
Question 28 Explanation: 
Topic: Operations on Fractions, Order of Operations (Objective 0019).
Question 29

Which of the following is not possible?

A

An equiangular triangle that is not equilateral.

Hint:
The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral.
B

An equiangular quadrilateral that is not equilateral.

Hint:
A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length).
C

An equilateral quadrilateral that is not equiangular.

Hint:
This rhombus has equal sides, but it doesn't have equal angles:
D

An equiangular hexagon that is not equilateral.

Hint:
This hexagon has equal angles, but it doesn't have equal sides:
Question 29 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles (Objective 0024).
Question 30

In the triangle below, \(\overline{AC}\cong \overline{AD}\cong \overline{DE}\) and \(m\angle CAD=100{}^\circ \).  What is \(m\angle DAE\)?

A
\( \large 20{}^\circ \)
Hint:
Angles ACD and ADC are congruent since they are base angles of an isosceles triangle. Since the angles of a triangle sum to 180, they sum to 80, and they are 40 deg each. Thus angle ADE is 140 deg, since it makes a straight line with angle ADC. Angles DAE and DEA are base angles of an isosceles triangle and thus congruent-- they sum to 40 deg, so are 20 deg each.
B
\( \large 25{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
C
\( \large 30{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
D
\( \large 40{}^\circ \)
Hint:
Make sure you're calculating the correct angle.
Question 30 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles, including real-world applications. (Objective 0024).
Question 31

A solution requires 4 ml of saline for every 7 ml of medicine. How much saline would be required for 50 ml of medicine?

A
\( \large 28 \dfrac{4}{7}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. The extra ml of saline requires 4 ml saline/ 7 ml medicine = 4/7 ml saline per 1 ml medicine.
B
\( \large 28 \dfrac{1}{4}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
C
\( \large 28 \dfrac{1}{7}\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
D
\( \large 87.5\) ml
Hint:
49 ml of medicine requires 28 ml of saline. How much saline does the extra ml require?
Question 31 Explanation: 
Topic: Apply proportional thinking to estimate quantities in real world situations (Objective 0019).
Question 32

The picture below represents a board with pegs on it, where the closest distance between two pegs is 1 cm.  What is the area of the pentagon shown?

A
\( \large 8\text{ c}{{\text{m}}^{2}} \)
Hint:
Don't just count the dots inside, that doesn't give the area. Try adding segments so that the slanted lines become the diagonals of rectangles.
B
\( \large 11\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
C
\( \large 11.5\text{ c}{{\text{m}}^{2}}\)
Hint:
An easy way to do this problem is to use Pick's Theorem (of course, it's better if you understand why Pick's theorem works): area = # pegs inside + half # pegs on the border - 1. In this case 8+9/2-1=11.5. A more appropriate strategy for elementary classrooms is to add segments; here's one way.

There are 20 1x1 squares enclosed, and the total area of the triangles that need to be subtracted is 8.5
D
\( \large 12.5\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
Question 32 Explanation: 
Topics: Calculate measurements and derive and use formulas for calculating the areas of geometric shapes and figures (Objective 0023).
Question 33

A car is traveling at 60 miles per hour.  Which of the expressions below could be used to compute how many feet the car travels in 1 second?  Note that 1 mile = 5,280 feet.

A
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot 60\dfrac{\text{seconds}}{\text{minute}} \)
Hint:
This answer is not in feet/second.
B
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot \dfrac{1}{60}\dfrac{\text{hour}}{\text{minutes}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}} \)
Hint:
This is the only choice where the answer is in feet per second and the unit conversions are correct.
C
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{foot}}{\text{miles}}\cdot 60\dfrac{\text{hours}}{\text{minute}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}\)
Hint:
Are there really 60 hours in a minute?
D
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{mile}}{\text{feet}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}\)
Hint:
This answer is not in feet/second.
Question 33 Explanation: 
Topic: Use unit conversions and dimensional analysis to solve measurement problems (Objective 0023).
Question 34

At a school fundraising event, people can buy a ticket to spin a spinner like the one below.  The region that the spinner lands in tells which, if any, prize the person wins.

If 240 people buy tickets to spin the spinner, what is the best estimate of the number of keychains that will be given away?

A

40

Hint:
"Keychain" appears on the spinner twice.
B

80

Hint:
The probability of getting a keychain is 1/3, and so about 1/3 of the time the spinner will win.
C

100

Hint:
What is the probability of winning a keychain?
D

120

Hint:
That would be the answer for getting any prize, not a keychain specifically.
Question 34 Explanation: 
Topic: I would call this topic expected value, which is not listed on the objectives. This question is very similar to one on the sample test. It's not a good question in that it's oversimplified (a more difficult and interesting question would be something like, "The school bought 100 keychains for prizes, what is the probability that they will run out before 240 people play?"). In any case, I believe the objective this is meant for is, "Recognize the difference between experimentally and theoretically determined probabilities in real-world situations. (Objective 0026)." This is not something easily assessed with multiple choice .
Question 35

What is the probability that two randomly selected people were born on the same day of the week?  Assume that all days are equally probable.

A
\( \large \dfrac{1}{7}\)
Hint:
It doesn't matter what day the first person was born on. The probability that the second person will match is 1/7 (just designate one person the first and the other the second). Another way to look at it is that if you list the sample space of all possible pairs, e.g. (Wed, Sun), there are 49 such pairs, and 7 of them are repeats of the same day, and 7/49=1/7.
B
\( \large \dfrac{1}{14}\)
Hint:
What would be the sample space here? Ie, how would you list 14 things that you pick one from?
C
\( \large \dfrac{1}{42}\)
Hint:
If you wrote the seven days of the week on pieces of paper and put the papers in a jar, this would be the probability that the first person picked Sunday and the second picked Monday from the jar -- not the same situation.
D
\( \large \dfrac{1}{49}\)
Hint:
This is the probability that they are both born on a particular day, e.g. Sunday.
Question 35 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 36

A biology class requires a lab fee, which is a whole number of dollars, and the same amount for all students. On Monday the instructor collected $70 in fees, on Tuesday she collected $126, and on Wednesday she collected $266. What is the largest possible amount the fee could be?

A

$2

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
B

$7

Hint:
A possible fee, but not the largest possible fee. Check the other choices to see which are factors of all three numbers.
C

$14

Hint:
This is the greatest common factor of 70, 126, and 266.
D

$70

Hint:
Not a factor of 126 or 266, so couldn't be correct.
Question 36 Explanation: 
Topic: Use GCF in real-world context (Objective 0018)
Question 37

Here are some statements:

I) 5 is an integer    II)\( -5 \)  is an integer    III) \(0\) is an integer

Which of the statements are true?

A

I only

B

I and II only

C

I and III only

D

I, II, and III

Hint:
The integers are ...-3, -2, -1, 0, 1, 2, 3, ....
Question 37 Explanation: 
Topic: Characteristics of Integers (Objective 0016)
Question 38

The speed of sound in dry air at 68 degrees F is 343.2 meters per second.  Which of the expressions below could be used to compute the number of kilometers that a sound wave travels in 10 minutes (in dry air at 68 degrees F)?

A
\( \large 343.2\times 60\times 10\)
Hint:
In kilometers, not meters.
B
\( \large 343.2\times 60\times 10\times \dfrac{1}{1000}\)
Hint:
Units are meters/sec \(\times\) seconds/minute \(\times\) minutes \(\times\) kilometers/meter, and the answer is in kilometers.
C
\( \large 343.2\times \dfrac{1}{60}\times 10\)
Hint:
Include units and make sure answer is in kilometers.
D
\( \large 343.2\times \dfrac{1}{60}\times 10\times \dfrac{1}{1000}\)
Hint:
Include units and make sure answer is in kilometers.
Question 38 Explanation: 
Topic: Use unit conversions and dimensional analysis to solve measurement problems (Objective 0023).
Question 39

M is a multiple of 26.  Which of the following cannot be true?

A

M is odd.

Hint:
All multiples of 26 are also multiples of 2, so they must be even.
B

M is a multiple of 3.

Hint:
3 x 26 is a multiple of both 3 and 26.
C

M is 26.

Hint:
1 x 26 is a multiple of 26.
D

M is 0.

Hint:
0 x 26 is a multiple of 26.
Question 39 Explanation: 
Topic: Characteristics of composite numbers (Objective 0018).
Question 40

Below is a portion of a number line.

Point A is one-quarter of the distance from 0.26 to 0.28.  What number is represented by point A?

A
\( \large0.26\)
Hint:
Please reread the question.
B
\( \large0.2625\)
Hint:
This is one-quarter of the distance between 0.26 and 0.27, which is not what the question asked.
C
\( \large0.265\)
D
\( \large0.27\)
Hint:
Please read the question more carefully. This answer would be correct if Point A were halfway between the tick marks, but it's not.
Question 40 Explanation: 
Topic: Using number lines (Objective 0017)
Question 41

The following story situations model \( 12\div 3\):

I)  Jack has 12 cookies, which he wants to share equally between himself and two friends.  How many cookies does each person get?

II) Trent has 12 cookies, which he wants to put into bags of 3 cookies each.  How many bags can he make?

III) Cicely has $12.  Cookies cost $3 each.  How many cookies can she buy?

Which of these questions illustrate the same model of division, either partitive (partioning) or measurement (quotative)?

A

I and II

B

I and III

C

II and III

Hint:
Problem I is partitive (or partitioning or sharing) -- we put 12 objects into 3 groups. Problems II and III are quotative (or measurement) -- we put 12 objects in groups of 3.
D

All three problems model the same meaning of division

Question 41 Explanation: 
Topic: Understand models of operations on numbers (Objective 0019).
Question 42

Use the problem below to answer the question that follows:

T shirts are on sale for 20% off. Tasha paid $8.73 for a shirt.  What is the regular price of the shirt? There is no tax on clothing purchases under $175.

Let p represent the regular price of these t-shirt. Which of the following equations is correct?

A
\( \large 0.8p=\$8.73\)
Hint:
80% of the regular price = $8.73.
B
\( \large \$8.73+0.2*\$8.73=p\)
Hint:
The 20% off was off of the ORIGINAL price, not off the $8.73 (a lot of people make this mistake). Plus this is the same equation as in choice c.
C
\( \large 1.2*\$8.73=p\)
Hint:
The 20% off was off of the ORIGINAL price, not off the $8.73 (a lot of people make this mistake). Plus this is the same equation as in choice b.
D
\( \large p-0.2*\$8.73=p\)
Hint:
Subtract p from both sides of this equation, and you have -.2 x 8.73 =0.
Question 42 Explanation: 
Topics: Use algebra to solve word problems involving percents and identify variables, and derive algebraic expressions that represent real-world situations (Objective 0020).
Question 43

Use the expression below to answer the question that follows.

                 \( \large \dfrac{\left( 4\times {{10}^{3}} \right)\times \left( 3\times {{10}^{4}} \right)}{6\times {{10}^{6}}}\)

Which of the following is equivalent to the expression above?

A

2

Hint:
\(10^3 \times 10^4=10^7\), and note that if you're guessing when the answers are so closely related, you're generally better off guessing one of the middle numbers.
B

20

Hint:
\( \dfrac{\left( 4\times {{10}^{3}} \right)\times \left( 3\times {{10}^{4}} \right)}{6\times {{10}^{6}}}=\dfrac {12 \times {{10}^{7}}}{6\times {{10}^{6}}}=\)\(2 \times {{10}^{1}}=20 \)
C

200

Hint:
\(10^3 \times 10^4=10^7\)
D

2000

Hint:
\(10^3 \times 10^4=10^7\), and note that if you're guessing when the answers are so closely related, you're generally better off guessing one of the middle numbers.
Question 43 Explanation: 
Topics: Scientific notation, exponents, simplifying fractions (Objective 0016, although overlaps with other objectives too).
Question 44

The histogram below shows the number of pairs of footware owned by a group of college students.

Which of the following statements can be inferred from the graph above?

A

The median number of pairs of footware owned is between 50 and 60 pairs.

Hint:
The same number of data points are less than the median as are greater than the median -- but on this histogram, clearly more than half the students own less than 50 pairs of shoes, so the median is less than 50.
B

The mode of the number of pairs of footware owned is 20.

Hint:
The mode is the most common number of pairs of footwear owned. We can't tell it from this histogram because each bar represents 10 different numbers-- perhaps 8 students each own each number from 10 to 19, but 40 students own exactly 6 pairs of shoes.... or perhaps not....
C

The mean number of pairs of footware owned is less than the median number of pairs of footware owned.

Hint:
This is a right skewed distribution, and so the mean is bigger than the median -- the few large values on the right pull up the mean, but have little effect on the median.
D

The median number of pairs of footware owned is between 10 and 20.

Hint:
There are approximately 230 students represented in this survey, and the 41st through 120th lowest values are between 10 and 20 -- thus the middle value is in that range.
Question 44 Explanation: 
Topics: Analyze and interpret various graphic and data representations, and use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 45

What is the mathematical name of the three-dimensional polyhedron depicted below?

A

Tetrahedron

Hint:
All the faces of a tetrahedron are triangles.
B

Triangular Prism

Hint:
A prism has two congruent, parallel bases, connected by parallelograms (since this is a right prism, the parallelograms are rectangles).
C

Triangular Pyramid

Hint:
A pyramid has one base, not two.
D

Trigon

Hint:
A trigon is a triangle (this is not a common term).
Question 45 Explanation: 
Topic: Classify and analyze three-dimensional figures using attributes of faces, edges, and vertices (Objective 0024).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 45 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
2122232425
2627282930
3132333435
3637383940
4142434445
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.