Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

Which of the following values of x satisfies the inequality \( \large \left| {{(x+2)}^{3}} \right|<3?\)

A
\( \large x=-3\)
Hint:
\( \left| {{(-3+2)}^{3}} \right|\)=\( \left | {(-1)}^3 \right | \)=\( \left | -1 \right |=1 \) .
B
\( \large x=0\)
Hint:
\( \left| {{(0+2)}^{3}} \right|\)=\( \left | {2}^3 \right | \)=\( \left | 8 \right | \) =\( 8\)
C
\( \large x=-4\)
Hint:
\( \left| {{(-4+2)}^{3}} \right|\)=\( \left | {(-2)}^3 \right | \)=\( \left | -8 \right | \) =\( 8\)
D
\( \large x=1\)
Hint:
\( \left| {{(1+2)}^{3}} \right|\)=\( \left | {3}^3 \right | \)=\( \left | 27 \right | \) = \(27\)
Question 1 Explanation: 
Topics: Laws of exponents, order of operations, interpret absolute value (Objective 0019).
Question 2

Which of the following is not possible?

A

An equiangular triangle that is not equilateral.

Hint:
The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral.
B

An equiangular quadrilateral that is not equilateral.

Hint:
A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length).
C

An equilateral quadrilateral that is not equiangular.

Hint:
This rhombus has equal sides, but it doesn't have equal angles:
D

An equiangular hexagon that is not equilateral.

Hint:
This hexagon has equal angles, but it doesn't have equal sides:
Question 2 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles (Objective 0024).
Question 3

The first histogram shows the average life expectancies for women in different countries in Africa in 1998; the second histogram gives similar data for Europe:

  

How much bigger is the range of the data for Africa than the range of the data for Europe?

A

0 years

Hint:
Range is the maximum life expectancy minus the minimum life expectancy.
B

12 years

Hint:
Are you subtracting frequencies? Range is about values of the data, not frequency.
C

18 years

Hint:
It's a little hard to read the graph, but it doesn't matter if you're consistent. It looks like the range for Africa is 80-38= 42 years and for Europe is 88-64 = 24; 42-24=18.
D

42 years

Hint:
Read the question more carefully.
Question 3 Explanation: 
Topic: Compare different data sets (Objective 0025).
Question 4

The chart below gives percentiles for the number of sit-ups that boys of various ages can do in 60 seconds (source , June 24, 2011)

 

Which of the following statements can be inferred from the above chart?

A

95% of 12 year old boys can do 56 sit-ups in 60 seconds.

Hint:
The 95th percentile means that 95% of scores are less than or equal to 56, and 5% are greater than or equal to 56.
B

At most 25% of 7 year old boys can do 19 or more sit-ups in 60 seconds.

Hint:
The 25th percentile means that 25% of scores are less than or equal to 19, and 75% are greater than or equal to 19.
C

Half of all 13 year old boys can do less than 41 sit-ups in 60 seconds and half can do more than 41 sit-ups in 60 seconds.

Hint:
Close, but not quite. There's no accounting for boys who can do exactly 41 sit ups. Look at these data: 10, 20, 41, 41, 41, 41, 50, 60, 90. The median is 41, but more than half can do 41 or more.
D

At least 75% of 16 year old boys can only do 51 or fewer sit-ups in 60 seconds.

Hint:
The "at least" is necessary due to duplicates. Suppose the data were 10, 20, 51, 51. The 75th percentile is 51, but 100% of the boys can only do 51 or fewer situps.
Question 4 Explanation: 
Topic: Analyze and interpret various graphic and nongraphic data representations (e.g., frequency distributions, percentiles) (Objective 0025).
Question 5

Here is a student's work solving an equation:

\( x-4=-2x+6\)

\( x-4+4=-2x+6+4\)

\( x=-2x+10\)

\( x-2x=10\)

\( x=10\)

Which of the following statements is true?

A

The student‘s solution is correct.

Hint:
Try plugging into the original solution.
B

The student did not correctly use properties of equality.

Hint:
After \( x=-2x+10\), the student subtracted 2x on the left and added 2x on the right.
C

The student did not correctly use the distributive property.

Hint:
Distributive property is \(a(b+c)=ab+ac\).
D

The student did not correctly use the commutative property.

Hint:
Commutative property is \(a+b=b+a\) or \(ab=ba\).
Question 5 Explanation: 
Topic: Justify algebraic manipulations by application of the properties of equality, the order of operations, the number properties, and the order properties (Objective 0020).
Question 6

A car is traveling at 60 miles per hour.  Which of the expressions below could be used to compute how many feet the car travels in 1 second?  Note that 1 mile = 5,280 feet.

A
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot 60\dfrac{\text{seconds}}{\text{minute}} \)
Hint:
This answer is not in feet/second.
B
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot \dfrac{1}{60}\dfrac{\text{hour}}{\text{minutes}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}} \)
Hint:
This is the only choice where the answer is in feet per second and the unit conversions are correct.
C
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{foot}}{\text{miles}}\cdot 60\dfrac{\text{hours}}{\text{minute}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}\)
Hint:
Are there really 60 hours in a minute?
D
\( \large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{mile}}{\text{feet}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}\)
Hint:
This answer is not in feet/second.
Question 6 Explanation: 
Topic: Use unit conversions and dimensional analysis to solve measurement problems (Objective 0023).
Question 7

Exactly one of the numbers below is a prime number.  Which one is it?

A
\( \large511 \)
Hint:
Divisible by 7.
B
\( \large517\)
Hint:
Divisible by 11.
C
\( \large519\)
Hint:
Divisible by 3.
D
\( \large521\)
Question 7 Explanation: 
Topics: Identify prime and composite numbers and demonstrate knowledge of divisibility rules (Objective 0018).
Question 8

Use the solution procedure below to answer the question that follows:

\( \large {\left( x+3 \right)}^{2}=10\)

\( \large \left( x+3 \right)\left( x+3 \right)=10\)

\( \large {x}^{2}+9=10\)

\( \large {x}^{2}+9-9=10-9\)

\( \large {x}^{2}=1\)

\( \large x=1\text{ or }x=-1\)

Which of the following is incorrect in the procedure shown above?

A

The commutative property is used incorrectly.

Hint:
The commutative property is \(a+b=b+a\) or \(ab=ba\).
B

The associative property is used incorrectly.

Hint:
The associative property is \(a+(b+c)=(a+b)+c\) or \(a \times (b \times c)=(a \times b) \times c\).
C

Order of operations is done incorrectly.

D

The distributive property is used incorrectly.

Hint:
\((x+3)(x+3)=x(x+3)+3(x+3)\)=\(x^2+3x+3x+9.\)
Question 8 Explanation: 
Topic: Justify algebraic manipulations by application of the properties of equality, the order of operations, the number properties, and the order properties (Objective 0020).
Question 9

The equation \( \large F=\frac{9}{5}C+32\) is used to convert a temperature measured in Celsius to the equivalent Farentheit temperature.

A patient's temperature increased by 1.5° Celcius.  By how many degrees Fahrenheit did her temperature increase?

A

1.5°

Hint:
Celsius and Fahrenheit don't increase at the same rate.
B

1.8°

Hint:
That's how much the Fahrenheit temp increases when the Celsius temp goes up by 1 degree.
C

2.7°

Hint:
Each degree increase in Celsius corresponds to a \(\dfrac{9}{5}=1.8\) degree increase in Fahrenheit. Thus the increase is 1.8+0.9=2.7.
D

Not enough information.

Hint:
A linear equation has constant slope, which means that every increase of the same amount in one variable, gives a constant increase in the other variable. It doesn't matter what temperature the patient started out at.
Question 9 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 10

Elena is going to use a calculator to check whether or not 267 is prime. She will pick certain divisors, and then find 267 divided by each, and see if she gets a whole number. If she never gets a whole number, then she's found a prime. Which numbers does Elena NEED to check before she can stop checking and be sure she has a prime?

A

All natural numbers from 2 to 266.

Hint:
She only needs to check primes -- checking the prime factors of any composite is enough to look for divisors. As a test taking strategy, the other three choices involve primes, so worth thinking about.
B

All primes from 2 to 266 .

Hint:
Remember, factors come in pairs (except for square root factors), so she would first find the smaller of the pair and wouldn't need to check the larger.
C

All primes from 2 to 133 .

Hint:
She doesn't need to check this high. Factors come in pairs, and something over 100 is going to be paired with something less than 3, so she will find that earlier.
D

All primes from \( \large 2\) to \( \large \sqrt{267}\).

Hint:
\(\sqrt{267} \times \sqrt{267}=267\). Any other pair of factors will have one factor less than \( \sqrt{267}\) and one greater, so she only needs to check up to \( \sqrt{267}\).
Question 10 Explanation: 
Topic: Identify prime and composite numbers (Objective 0018).
Question 11

Which of the following inequalities describes all values of x  with \(\large  \dfrac{x}{2}\le \dfrac{x}{3}\)?

A
\( \large x < 0\)
Hint:
If x =0, then x/2 = x/3, so this answer can't be correct.
B
\( \large x \le 0\)
C
\( \large x > 0\)
Hint:
If x =0, then x/2 = x/3, so this answer can't be correct.
D
\( \large x \ge 0\)
Hint:
Try plugging in x = 6.
Question 11 Explanation: 
Topics: Inequalities, operations (Objective 0019) (not exactly sure how to classify, but this is like one of the problems on the official sample test).
Question 12

Which of the following nets will not fold into a cube?

A
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
B
C
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
D
Hint:
If you have trouble visualizing, cut them out and fold (during the test, you can tear paper to approximate).
Question 12 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 13

The chairs in a large room can be arranged in rows of 18, 25, or 60 with no chairs left over. If C is the smallest possible number of chairs in the room, which of the following inequalities does C satisfy?

A
\( \large C\le 300\)
Hint:
Find the LCM.
B
\( \large 300 < C \le 500 \)
Hint:
Find the LCM.
C
\( \large 500 < C \le 700 \)
Hint:
Find the LCM.
D
\( \large C>700\)
Hint:
The LCM is 900, which is the smallest number of chairs.
Question 13 Explanation: 
Topic: Apply LCM in "real-world" situations (according to standardized tests....) (Objective 0018).
Question 14

The expression \( \large {{7}^{-4}}\cdot {{8}^{-6}}\) is equal to which of the following?

A
\( \large \dfrac{8}{{{\left( 56 \right)}^{4}}}\)
Hint:
The bases are whole numbers, and the exponents are negative. How can the numerator be 8?
B
\( \large \dfrac{64}{{{\left( 56 \right)}^{4}}}\)
Hint:
The bases are whole numbers, and the exponents are negative. How can the numerator be 64?
C
\( \large \dfrac{1}{8\cdot {{\left( 56 \right)}^{4}}}\)
Hint:
\(8^{-6}=8^{-4} \times 8^{-2}\)
D
\( \large \dfrac{1}{64\cdot {{\left( 56 \right)}^{4}}}\)
Question 14 Explanation: 
Topics: Laws of exponents (Objective 0019).
Question 15

M is a multiple of 26.  Which of the following cannot be true?

A

M is odd.

Hint:
All multiples of 26 are also multiples of 2, so they must be even.
B

M is a multiple of 3.

Hint:
3 x 26 is a multiple of both 3 and 26.
C

M is 26.

Hint:
1 x 26 is a multiple of 26.
D

M is 0.

Hint:
0 x 26 is a multiple of 26.
Question 15 Explanation: 
Topic: Characteristics of composite numbers (Objective 0018).
Question 16

Four children randomly line up, single file.  What is the probability that they are in height order, with the shortest child in front?   All of the children are different heights.

A
\( \large \dfrac{1}{4}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
B
\( \large \dfrac{1}{256} \)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
C
\( \large \dfrac{1}{16}\)
Hint:
Try a simpler question with 3 children -- call them big, medium, and small -- and list all the ways they could line up. Then see how to extend your logic to the problem with 4 children.
D
\( \large \dfrac{1}{24}\)
Hint:
The number of ways for the children to line up is \(4!=4 \times 3 \times 2 \times 1 =24\) -- there are 4 choices for who is first in line, then 3 for who is second, etc. Only one of these lines has the children in the order specified.
Question 16 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Question 17

A publisher prints a series of books with covers made of identical material and using the same thickness of paper for each page.  The covers of the book together are 0.4 cm thick, and 125 pieces of the paper used together are 1 cm thick.

The publisher uses a linear function to determine the total thickness, T(n) of a book made with n sheets of paper.   What are the slope and intercept of T(n)?

A

Intercept = 0.4 cm, Slope = 125 cm/page

Hint:
This would mean that each page of the book was 125 cm thick.
B

Intercept =0.4 cm, Slope = \(\dfrac{1}{125}\)cm/page

Hint:
The intercept is how thick the book would be with no pages in it. The slope is how much 1 extra page adds to the thickness of the book.
C

Intercept = 125 cm, Slope = 0.4 cm

Hint:
This would mean that with no pages in the book, it would be 125 cm thick.
D

Intercept = \(\dfrac{1}{125}\)cm, Slope = 0.4 pages/cm

Hint:
This would mean that each new page of the book made it 0.4 cm thicker.
Question 17 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 18

Use the graph below to answer the question that follows.

If the polygon shown above is reflected about the y axis and then rotated 90 degrees clockwise about the origin, which of the following graphs is the result?

A
Hint:
Try following the point (1,4) to see where it goes after each transformation.
B
C
Hint:
Make sure you're reflecting in the correct axis.
D
Hint:
Make sure you're rotating the correct direction.
Question 18 Explanation: 
Topic: Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry, similarity, and congruence; and use these concepts to solve problems (Objective 0024).
Question 19

Which of the following sets of polygons can be assembled to form a pentagonal pyramid?

A

2 pentagons and 5 rectangles.

Hint:
These can be assembled to form a pentagonal prism, not a pentagonal pyramid.
B

1 square and 5 equilateral triangles.

Hint:
You need a pentagon for a pentagonal pyramid.
C

1 pentagon and 5 isosceles triangles.

D

1 pentagon and 10 isosceles triangles.

Question 19 Explanation: 
Topic:Classify and analyze three-dimensional figures using attributes of faces, edges, and vertices (Objective 0024).
Question 20

Below are front, side, and top views of a three-dimensional solid.

Which of the following could be the solid shown above?

A

A sphere

Hint:
All views would be circles.
B

A cylinder

C

A cone

Hint:
Two views would be triangles, not rectangles.
D

A pyramid

Hint:
How would one view be a circle?
Question 20 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 21

The picture below represents a board with pegs on it, where the closest distance between two pegs is 1 cm.  What is the area of the pentagon shown?

A
\( \large 8\text{ c}{{\text{m}}^{2}} \)
Hint:
Don't just count the dots inside, that doesn't give the area. Try adding segments so that the slanted lines become the diagonals of rectangles.
B
\( \large 11\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
C
\( \large 11.5\text{ c}{{\text{m}}^{2}}\)
Hint:
An easy way to do this problem is to use Pick's Theorem (of course, it's better if you understand why Pick's theorem works): area = # pegs inside + half # pegs on the border - 1. In this case 8+9/2-1=11.5. A more appropriate strategy for elementary classrooms is to add segments; here's one way.

There are 20 1x1 squares enclosed, and the total area of the triangles that need to be subtracted is 8.5
D
\( \large 12.5\text{ c}{{\text{m}}^{2}}\)
Hint:
Try adding segments so that the slanted lines become the diagonals of rectangles.
Question 21 Explanation: 
Topics: Calculate measurements and derive and use formulas for calculating the areas of geometric shapes and figures (Objective 0023).
Question 22

Use the samples of a student's work below to answer the question that follows:

This student divides fractions by first finding a common denominator, then dividing the numerators.

\( \large \dfrac{2}{3} \div \dfrac{3}{4} \longrightarrow \dfrac{8}{12} \div \dfrac{9}{12} \longrightarrow 8 \div 9 = \dfrac {8}{9}\) \( \large \dfrac{2}{5} \div \dfrac{7}{20} \longrightarrow \dfrac{8}{20} \div \dfrac{7}{20} \longrightarrow 8 \div 7 = \dfrac {8}{7}\) \( \large \dfrac{7}{6} \div \dfrac{3}{4} \longrightarrow \dfrac{14}{12} \div \dfrac{9}{12} \longrightarrow 14 \div 9 = \dfrac {14}{9}\)

Which of the following best describes the mathematical validity of the algorithm the student is using?

A

It is not valid. Common denominators are for adding and subtracting fractions, not for dividing them.

Hint:
Don't be so rigid! Usually there's more than one way to do something in math.
B

It got the right answer in these three cases, but it isn‘t valid for all rational numbers.

Hint:
Did you try some other examples? What makes you say it's not valid?
C

It is valid if the rational numbers in the division problem are in lowest terms and the divisor is not zero.

Hint:
Lowest terms doesn't affect this problem at all.
D

It is valid for all rational numbers, as long as the divisor is not zero.

Hint:
When we have common denominators, the problem is in the form a/b divided by c/b, and the answer is a/c, as the student's algorithm predicts.
Question 22 Explanation: 
Topic: Analyze Non-Standard Computational Algorithms (Objective 0019).
Question 23

Which of the following is an irrational number?

A
\( \large \sqrt[3]{8}\)
Hint:
This answer is the cube root of 8. Since 2 x 2 x 2 =8, this is equal to 2, which is rational because 2 = 2/1.
B
\( \large \sqrt{8}\)
Hint:
It is not trivial to prove that this is irrational, but you can get this answer by eliminating the other choices.
C
\( \large \dfrac{1}{8}\)
Hint:
1/8 is the RATIO of two integers, so it is rational.
D
\( \large -8\)
Hint:
Negative integers are also rational, -8 = -8/1, a ratio of integers.
Question 23 Explanation: 
Topic: Identifying rational and irrational numbers (Objective 0016).
Question 24

Which of the following is the equation of a linear function?

A
\( \large y={{x}^{2}}+2x+7\)
Hint:
This is a quadratic function.
B
\( \large y={{2}^{x}}\)
Hint:
This is an exponential function.
C
\( \large y=\dfrac{15}{x}\)
Hint:
This is an inverse function.
D
\( \large y=x+(x+4)\)
Hint:
This is a linear function, y=2x+4, it's graph is a straight line with slope 2 and y-intercept 4.
Question 24 Explanation: 
Topic: Distinguish between linear and nonlinear functions (Objective 0022).
Question 25

The least common multiple of 60 and N is 1260. Which of the following could be the prime factorization of N?

A
\( \large2\cdot 5\cdot 7\)
Hint:
1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM.
B
\( \large{{2}^{3}}\cdot {{3}^{2}}\cdot 5 \cdot 7\)
Hint:
1260 is not divisible by 8, so it isn't a multiple of this N.
C
\( \large3 \cdot 5 \cdot 7\)
Hint:
1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM.
D
\( \large{{3}^{2}}\cdot 5\cdot 7\)
Hint:
\(1260=2^2 \cdot 3^2 \cdot 5 \cdot 7\) and \(60=2^2 \cdot 3 \cdot 5\). In order for 1260 to be the LCM, N has to be a multiple of \(3^2\) and of 7 (because 60 is not a multiple of either of these). N also cannot introduce a factor that would require the LCM to be larger (as in choice b).
Question 25 Explanation: 
Topic: Least Common Multiple (Objective 0018)
Question 26

Which of the lines depicted below is a graph of \( \large y=2x-5\)?

A

a

Hint:
The slope of line a is negative.
B

b

Hint:
Wrong slope and wrong intercept.
C

c

Hint:
The intercept of line c is positive.
D

d

Hint:
Slope is 2 -- for every increase of 1 in x, y increases by 2. Intercept is -5 -- the point (0,-5) is on the line.
Question 26 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 27

Which of the lists below is in order from least to greatest value?

A
\( \large -0.044,\quad -0.04,\quad 0.04,\quad 0.044\)
Hint:
These are easier to compare if you add trailing zeroes (this is finding a common denominator) -- all in thousandths, -0.044, -0.040,0 .040, 0.044. The middle two numbers, -0.040 and 0.040 can be modeled as owing 4 cents and having 4 cents. The outer two numbers are owing or having a bit more.
B
\( \large -0.04,\quad -0.044,\quad 0.044,\quad 0.04\)
Hint:
0.04=0.040, which is less than 0.044.
C
\( \large -0.04,\quad -0.044,\quad 0.04,\quad 0.044\)
Hint:
-0.04=-0.040, which is greater than \(-0.044\).
D
\( \large -0.044,\quad -0.04,\quad 0.044,\quad 0.04\)
Hint:
0.04=0.040, which is less than 0.044.
Question 27 Explanation: 
Topic: Ordering decimals and integers (Objective 0017).
Question 28

The column below consists of two cubes and a cylinder.  The cylinder has diameter y, which is also the length of the sides of each cube.   The total height of the column is 5y.  Which of the formulas below gives the volume of the column?

 
A
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{4}\)
Hint:
The cubes each have volume \(y^3\). The cylinder has radius \(\dfrac{y}{2}\) and height \(3y\). The volume of a cylinder is \(\pi r^2 h=\pi ({\dfrac{y}{2}})^2(3y)=\dfrac{3\pi {{y}^{3}}}{4}\). Note that the volume of a cylinder is analogous to that of a prism -- area of the base times height.
B
\( \large 2{{y}^{3}}+3\pi {{y}^{3}}\)
Hint:
y is the diameter of the circle, not the radius.
C
\( \large {{y}^{3}}+5\pi {{y}^{3}}\)
Hint:
Don't forget to count both cubes.
D
\( \large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{8}\)
Hint:
Make sure you know how to find the volume of a cylinder.
Question 28 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
Question 29

The prime factorization of  n can be written as n=pqr, where p, q, and r are distinct prime numbers.  How many factors does n have, including 1 and itself?

A
\( \large3\)
Hint:
1, p, q, r, and pqr are already 5, so this isn't enough. You might try plugging in p=2, q=3, and r=5 to help with this problem.
B
\( \large5\)
Hint:
Don't forget pq, etc. You might try plugging in p=2, q=3, and r=5 to help with this problem.
C
\( \large6\)
Hint:
You might try plugging in p=2, q=3, and r=5 to help with this problem.
D
\( \large8\)
Hint:
1, p, q, r, pq, pr, qr, pqr.
Question 29 Explanation: 
Topic: Recognize uses of prime factorization of a number (Objective 0018).
Question 30

Here are some statements:

I) 5 is an integer    II)\( -5 \)  is an integer    III) \(0\) is an integer

Which of the statements are true?

A

I only

B

I and II only

C

I and III only

D

I, II, and III

Hint:
The integers are ...-3, -2, -1, 0, 1, 2, 3, ....
Question 30 Explanation: 
Topic: Characteristics of Integers (Objective 0016)
Question 31

In each expression below  N represents a negative integer. Which expression could have a negative value?

A
\( \large {{N}^{2}}\)
Hint:
Squaring always gives a non-negative value.
B
\( \large 6-N\)
Hint:
A story problem for this expression is, if it was 6 degrees out at noon and N degrees out at sunrise, by how many degrees did the temperature rise by noon? Since N is negative, the answer to this question has to be positive, and more than 6.
C
\( \large -N\)
Hint:
If N is negative, then -N is positive
D
\( \large 6+N\)
Hint:
For example, if \(N=-10\), then \(6+N = -4\)
Question 31 Explanation: 
If you are stuck on a question like this, try a few examples to eliminate some choices and to help you understand what the question means. Topic: Characteristics of integers (Objective 0016).
Question 32

In the triangle below, \(\overline{AC}\cong \overline{AD}\cong \overline{DE}\) and \(m\angle CAD=100{}^\circ \).  What is \(m\angle DAE\)?

A
\( \large 20{}^\circ \)
Hint:
Angles ACD and ADC are congruent since they are base angles of an isosceles triangle. Since the angles of a triangle sum to 180, they sum to 80, and they are 40 deg each. Thus angle ADE is 140 deg, since it makes a straight line with angle ADC. Angles DAE and DEA are base angles of an isosceles triangle and thus congruent-- they sum to 40 deg, so are 20 deg each.
B
\( \large 25{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
C
\( \large 30{}^\circ \)
Hint:
If two sides of a triangle are congruent, then it's isosceles, and the base angles of an isosceles triangle are equal.
D
\( \large 40{}^\circ \)
Hint:
Make sure you're calculating the correct angle.
Question 32 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles, including real-world applications. (Objective 0024).
Question 33

Each individual cube that makes up the rectangular solid depicted below has 6 inch sides.  What is the surface area of the solid in square feet?

 
A
\( \large 11\text{ f}{{\text{t}}^{2}}\)
Hint:
Check your units and make sure you're using feet and inches consistently.
B
\( \large 16.5\text{ f}{{\text{t}}^{2}}\)
Hint:
Each square has surface area \(\dfrac{1}{2} \times \dfrac {1}{2}=\dfrac {1}{4}\) sq feet. There are 9 squares on the top and bottom, and 12 on each of 4 sides, for a total of 66 squares. 66 squares \(\times \dfrac {1}{4}\) sq feet/square =16.5 sq feet.
C
\( \large 66\text{ f}{{\text{t}}^{2}}\)
Hint:
The area of each square is not 1.
D
\( \large 2376\text{ f}{{\text{t}}^{2}}\)
Hint:
Read the question more carefully -- the answer is supposed to be in sq feet, not sq inches.
Question 33 Explanation: 
Topics: Use unit conversions to solve measurement problems, and derive and use formulas for calculating surface areas of geometric shapes and figures (Objective 0023).
Question 34

Kendra is trying to decide which fraction is greater, \(  \dfrac{4}{7}\) or \(  \dfrac{5}{8}\). Which of the following answers shows the best reasoning?

A

\( \dfrac{4}{7}\) is \( \dfrac{3}{7}\)away from 1, and \( \dfrac{5}{8}\) is \( \dfrac{3}{8}\)away from 1. Since eighth‘s are smaller than seventh‘s, \( \dfrac{5}{8}\) is closer to 1, and is the greater of the two fractions.

B

\( 7-4=3\) and \( 8-5=3\), so the fractions are equal.

Hint:
Not how to compare fractions. By this logic, 1/2 and 3/4 are equal, but 1/2 and 2/4 are not.
C

\( 4\times 8=32\) and \( 7\times 5=35\). Since \( 32<35\) , \( \dfrac{5}{8}<\dfrac{4}{7}\)

Hint:
Starts out as something that works, but the conclusion is wrong. 4/7 = 32/56 and 5/8 = 35/56. The cross multiplication gives the numerators, and 35/56 is bigger.
D

\( 4<5\) and \( 7<8\), so \( \dfrac{4}{7}<\dfrac{5}{8}\)

Hint:
Conclusion is correct, logic is wrong. With this reasoning, 1/2 would be less than 2/100,000.
Question 34 Explanation: 
Topics: Comparing fractions, and understanding the meaning of fractions (Objective 0017).
Question 35
I. \(\large \dfrac{1}{2}+\dfrac{1}{3}\) II. \( \large   .400000\)  III. \(\large\dfrac{1}{5}+\dfrac{1}{5}\)
     
IV. \( \large 40\% \) V. \( \large 0.25 \) VI. \(\large\dfrac{14}{35}\)

 

Which of the lists below includes all of the above expressions that are equivalent to \( \dfrac{2}{5}\)?

A

I, III, V, VI

Hint:
I and V are not at all how fractions and decimals work.
B

III, VI

Hint:
These are right, but there are more.
C

II, III, VI

Hint:
These are right, but there are more.
D

II, III, IV, VI

Question 35 Explanation: 
Topic: Converting between fractions, decimals, and percents (Objective 0017)
Question 36

The window glass below has the shape of a semi-circle on top of a square, where the side of the square has length x.  It was cut from one piece of glass.

What is the perimeter of the window glass?

A
\( \large 3x+\dfrac{\pi x}{2}\)
Hint:
By definition, \(\pi\) is the ratio of the circumference of a circle to its diameter; thus the circumference is \(\pi d\). Since we have a semi-circle, its perimeter is \( \dfrac{1}{2} \pi x\). Only 3 sides of the square contribute to the perimeter.
B
\( \large 3x+2\pi x\)
Hint:
Make sure you know how to find the circumference of a circle.
C
\( \large 3x+\pi x\)
Hint:
Remember it's a semi-circle, not a circle.
D
\( \large 4x+2\pi x\)
Hint:
Only 3 sides of the square contribute to the perimeter.
Question 36 Explanation: 
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
Question 37

The Americans with Disabilties Act (ADA) regulations state that the maximum slope for a wheelchair ramp in new construction is 1:12, although slopes between 1:16 and 1:20 are preferred.  The maximum rise for any run is 30 inches.   The graph below shows the rise and runs of four different wheelchair ramps.  Which ramp is in compliance with the ADA regulations for new construction?

A

A

Hint:
Rise is more than 30 inches.
B

B

Hint:
Run is almost 24 feet, so rise can be almost 2 feet.
C

C

Hint:
Run is 12 feet, so rise can be at most 1 foot.
D

D

Hint:
Slope is 1:10 -- too steep.
Question 37 Explanation: 
Topic: Interpret meaning of slope in a real world situation (Objective 0022).
Question 38

The letters A, and B represent digits (possibly equal) in the ten digit number x=1,438,152,A3B.   For which values of A and B is x divisible by 12, but not by 9?

A
\( \large A = 0, B = 4\)
Hint:
Digits add to 31, so not divisible by 3, so not divisible by 12.
B
\( \large A = 7, B = 2\)
Hint:
Digits add to 36, so divisible by 9.
C
\( \large A = 0, B = 6\)
Hint:
Digits add to 33, divisible by 3, not 9. Last digits are 36, so divisible by 4, and hence by 12.
D
\( \large A = 4, B = 8\)
Hint:
Digits add to 39, divisible by 3, not 9. Last digits are 38, so not divisible by 4, so not divisible by 12.
Question 38 Explanation: 
Topic: Demonstrate knowledge of divisibility rules (Objective 0018).
Question 39

Which of the following is equivalent to \(  \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}?\)

A
\( \large \dfrac{7}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
B
\( \large \dfrac{1}{2}\)
Hint:
Addition and subtraction are of equal priority in the order of operations -- do them left to right.
C
\( \large \dfrac{3}{4}\)
Hint:
\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{2}{8}\times \dfrac{1}{2}\)=\( \dfrac{3}{4}-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}+-\dfrac{1}{8}+\dfrac{1}{8}\)=\( \dfrac{3}{4}\)
D
\( \large \dfrac{3}{16}\)
Hint:
Multiplication comes before addition and subtraction in the order of operations.
Question 39 Explanation: 
Topic: Operations on Fractions, Order of Operations (Objective 0019).
Question 40

Below is a portion of a number line.

Point A is one-quarter of the distance from 0.26 to 0.28.  What number is represented by point A?

A
\( \large0.26\)
Hint:
Please reread the question.
B
\( \large0.2625\)
Hint:
This is one-quarter of the distance between 0.26 and 0.27, which is not what the question asked.
C
\( \large0.265\)
D
\( \large0.27\)
Hint:
Please read the question more carefully. This answer would be correct if Point A were halfway between the tick marks, but it's not.
Question 40 Explanation: 
Topic: Using number lines (Objective 0017)
Question 41

The histogram below shows the number of pairs of footware owned by a group of college students.

Which of the following statements can be inferred from the graph above?

A

The median number of pairs of footware owned is between 50 and 60 pairs.

Hint:
The same number of data points are less than the median as are greater than the median -- but on this histogram, clearly more than half the students own less than 50 pairs of shoes, so the median is less than 50.
B

The mode of the number of pairs of footware owned is 20.

Hint:
The mode is the most common number of pairs of footwear owned. We can't tell it from this histogram because each bar represents 10 different numbers-- perhaps 8 students each own each number from 10 to 19, but 40 students own exactly 6 pairs of shoes.... or perhaps not....
C

The mean number of pairs of footware owned is less than the median number of pairs of footware owned.

Hint:
This is a right skewed distribution, and so the mean is bigger than the median -- the few large values on the right pull up the mean, but have little effect on the median.
D

The median number of pairs of footware owned is between 10 and 20.

Hint:
There are approximately 230 students represented in this survey, and the 41st through 120th lowest values are between 10 and 20 -- thus the middle value is in that range.
Question 41 Explanation: 
Topics: Analyze and interpret various graphic and data representations, and use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 42

Which of the following is equal to eleven billion four hundred thousand?

A
\( \large 11,400,000\)
Hint:
That's eleven million four hundred thousand.
B
\(\large11,000,400,000\)
C
\( \large11,000,000,400,000\)
Hint:
That's eleven trillion four hundred thousand (although with British conventions; this answer is correct, but in the US, it isn't).
D
\( \large 11,400,000,000\)
Hint:
That's eleven billion four hundred million
Question 42 Explanation: 
Topic: Place Value (Objective 0016)
Question 43

A family on vacation drove the first 200 miles in 4 hours and the second 200 miles in 5 hours.  Which expression below gives their average speed for the entire trip?

A
\( \large \dfrac{200+200}{4+5}\)
Hint:
Average speed is total distance divided by total time.
B
\( \large \left( \dfrac{200}{4}+\dfrac{200}{5} \right)\div 2\)
Hint:
This seems logical, but the problem is that it weights the first 4 hours and the second 5 hours equally, when each hour should get the same weight in computing the average speed.
C
\( \large \dfrac{200}{4}+\dfrac{200}{5} \)
Hint:
This would be an average of 90 miles per hour!
D
\( \large \dfrac{400}{4}+\dfrac{400}{5} \)
Hint:
This would be an average of 180 miles per hour! Even a family of race car drivers probably doesn't have that average speed on a vacation!
Question 43 Explanation: 
Topic: Solve a variety of measurement problems (e.g., time, temperature, rates, average rates of change) in real-world situations (Objective 0023).
Question 44

Which of the graphs below represent functions?

I. II. III. IV.   
A

I and IV only.

Hint:
There are vertical lines that go through 2 points in IV .
B

I and III only.

Hint:
Even though III is not continuous, it's still a function (assuming that vertical lines between the "steps" do not go through 2 points).
C

II and III only.

Hint:
Learn about the vertical line test.
D

I, II, and IV only.

Hint:
There are vertical lines that go through 2 points in II.
Question 44 Explanation: 
Understand the definition of function and various representations of functions (e.g., input/output machines, tables, graphs, mapping diagrams, formulas). (Objective 0021).
Question 45

The "houses" below are made of toothpicks and gum drops.

How many toothpicks are there in a row of 53 houses?

A

212

Hint:
Can the number of toothpicks be even?
B

213

Hint:
One way to see this is that every new "house" adds 4 toothpicks to the leftmost vertical toothpick -- so the total number is 1 plus 4 times the number of "houses." There are many other ways to look at the problem too.
C

217

Hint:
Try your strategy with a smaller number of "houses" so you can count and find your mistake.
D

265

Hint:
Remember that the "houses" overlap some walls.
Question 45 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic). (Objective 0021).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 45 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
2122232425
2627282930
3132333435
3637383940
4142434445
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.