Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice


Your answers are highlighted below.
Question 1

Which of the following is not possible?

A

An equiangular triangle that is not equilateral.

Hint:
The AAA property of triangles states that all triangles with corresponding angles congruent are similar. Thus all triangles with three equal angles are similar, and are equilateral.
B

An equiangular quadrilateral that is not equilateral.

Hint:
A rectangle is equiangular (all angles the same measure), but if it's not a square, it's not equilateral (all sides the same length).
C

An equilateral quadrilateral that is not equiangular.

Hint:
This rhombus has equal sides, but it doesn't have equal angles:
D

An equiangular hexagon that is not equilateral.

Hint:
This hexagon has equal angles, but it doesn't have equal sides:
Question 1 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles (Objective 0024).
Question 2

The "houses" below are made of toothpicks and gum drops.

How many toothpicks are there in a row of 53 houses?

A

212

Hint:
Can the number of toothpicks be even?
B

213

Hint:
One way to see this is that every new "house" adds 4 toothpicks to the leftmost vertical toothpick -- so the total number is 1 plus 4 times the number of "houses." There are many other ways to look at the problem too.
C

217

Hint:
Try your strategy with a smaller number of "houses" so you can count and find your mistake.
D

265

Hint:
Remember that the "houses" overlap some walls.
Question 2 Explanation: 
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic). (Objective 0021).
Question 3

Use the problem below to answer the question that follows:

T shirts are on sale for 20% off. Tasha paid $8.73 for a shirt.  What is the regular price of the shirt? There is no tax on clothing purchases under $175.

Let p represent the regular price of these t-shirt. Which of the following equations is correct?

A
\( \large 0.8p=\$8.73\)
Hint:
80% of the regular price = $8.73.
B
\( \large \$8.73+0.2*\$8.73=p\)
Hint:
The 20% off was off of the ORIGINAL price, not off the $8.73 (a lot of people make this mistake). Plus this is the same equation as in choice c.
C
\( \large 1.2*\$8.73=p\)
Hint:
The 20% off was off of the ORIGINAL price, not off the $8.73 (a lot of people make this mistake). Plus this is the same equation as in choice b.
D
\( \large p-0.2*\$8.73=p\)
Hint:
Subtract p from both sides of this equation, and you have -.2 x 8.73 =0.
Question 3 Explanation: 
Topics: Use algebra to solve word problems involving percents and identify variables, and derive algebraic expressions that represent real-world situations (Objective 0020).
Question 4

Aya and Kendra want to estimate the height of a tree. On a sunny day, Aya measures Kendra's shadow as 3 meters long, and Kendra measures the tree's shadow as 15 meters long. Kendra is 1.5 meters tall. How tall is the tree?

A

7.5 meters

Hint:
Here is a picture, note that the large and small right triangles are similar:

One way to do the problem is to note that there is a dilation (scale) factor of 5 on the shadows, so there must be that factor on the heights too. Another way is to note that the shadows are twice as long as the heights.
B

22.5 meters

Hint:
Draw a picture.
C

30 meters

Hint:
Draw a picture.
D

45 meters

Hint:
Draw a picture.
Question 4 Explanation: 
Topic: Apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to similarity, ; and use these concepts to solve problems (Objective 0024) . Fits in other places too.
Question 5

What is the probability that two randomly selected people were born on the same day of the week?  Assume that all days are equally probable.

A
\( \large \dfrac{1}{7}\)
Hint:
It doesn't matter what day the first person was born on. The probability that the second person will match is 1/7 (just designate one person the first and the other the second). Another way to look at it is that if you list the sample space of all possible pairs, e.g. (Wed, Sun), there are 49 such pairs, and 7 of them are repeats of the same day, and 7/49=1/7.
B
\( \large \dfrac{1}{14}\)
Hint:
What would be the sample space here? Ie, how would you list 14 things that you pick one from?
C
\( \large \dfrac{1}{42}\)
Hint:
If you wrote the seven days of the week on pieces of paper and put the papers in a jar, this would be the probability that the first person picked Sunday and the second picked Monday from the jar -- not the same situation.
D
\( \large \dfrac{1}{49}\)
Hint:
This is the probability that they are both born on a particular day, e.g. Sunday.
Question 5 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 6

The Americans with Disabilties Act (ADA) regulations state that the maximum slope for a wheelchair ramp in new construction is 1:12, although slopes between 1:16 and 1:20 are preferred.  The maximum rise for any run is 30 inches.   The graph below shows the rise and runs of four different wheelchair ramps.  Which ramp is in compliance with the ADA regulations for new construction?

A

A

Hint:
Rise is more than 30 inches.
B

B

Hint:
Run is almost 24 feet, so rise can be almost 2 feet.
C

C

Hint:
Run is 12 feet, so rise can be at most 1 foot.
D

D

Hint:
Slope is 1:10 -- too steep.
Question 6 Explanation: 
Topic: Interpret meaning of slope in a real world situation (Objective 0022).
Question 7

An above-ground swimming pool is in the shape of a regular hexagonal prism, is one meter high, and holds 65 cubic meters of water.  A second pool has a base that is also a regular hexagon, but with sides twice as long as the sides in the first pool.  This second pool is also one meter high.  How much water will the second pool hold?

A
\( \large 65\text{ }{{\text{m}}^{3}}\)
Hint:
A bigger pool would hold more water.
B
\( \large 65\cdot 2\text{ }{{\text{m}}^{3}}\)
Hint:
Try a simpler example, say doubling the sides of the base of a 1 x 1 x 1 cube.
C
\( \large 65\cdot 4\text{ }{{\text{m}}^{3}}\)
Hint:
If we think of the pool as filled with 1 x 1 x 1 cubes (and some fractions of cubes), then scaling to the larger pool changes each 1 x 1 x 1 cube to a 2 x 2 x 1 prism, or multiplies volume by 4.
D
\( \large 65\cdot 8\text{ }{{\text{m}}^{3}}\)
Hint:
Try a simpler example, say doubling the sides of the base of a 1 x 1 x 1 cube.
Question 7 Explanation: 
Topic: Determine how the characteristics (e.g., area, volume) of geometric figures and shapes are affected by changes in their dimensions (Objective 0023).
Question 8

The histogram below shows the frequency of a class's scores on a 4 question quiz.

What was the mean score on the quiz?

A
\( \large 2.75\)
Hint:
There were 20 students who took the quiz. Total points earned: \(2 \times 1+6 \times 2+ 7\times 3+5 \times 4=55\), and 55/20 = 2.75.
B
\( \large 2\)
Hint:
How many students are there total? Did you count them all?
C
\( \large 3\)
Hint:
How many students are there total? Did you count them all? Be sure you're finding the mean, not the median or the mode.
D
\( \large 2.5\)
Hint:
How many students are there total? Did you count them all? Don't just take the mean of 1, 2, 3, 4 -- you have to weight them properly.
Question 8 Explanation: 
Topics: Analyze and interpret various graphic representations, and use measures of central tendency (e.g., mean, median, mode) and spread to describe and interpret real-world data (Objective 0025).
Question 9

The picture below shows identical circles drawn on a piece of paper.  The rectangle represents an index card that is blocking your view of \( \dfrac{3}{5}\) of the circles on the paper.  How many circles are covered by the rectangle?

A

4

Hint:
The card blocks more than half of the circles, so this number is too small.
B

5

Hint:
The card blocks more than half of the circles, so this number is too small.
C

8

Hint:
The card blocks more than half of the circles, so this number is too small.
D

12

Hint:
2/5 of the circles or 8 circles are showing. Thus 4 circles represent 1/5 of the circles, and \(4 \times 5=20\) circles represent 5/5 or all the circles. Thus 12 circles are hidden.
Question 9 Explanation: 
Topic: Models of Fractions (Objective 0017)
Question 10

Elena is going to use a calculator to check whether or not 267 is prime. She will pick certain divisors, and then find 267 divided by each, and see if she gets a whole number. If she never gets a whole number, then she's found a prime. Which numbers does Elena NEED to check before she can stop checking and be sure she has a prime?

A

All natural numbers from 2 to 266.

Hint:
She only needs to check primes -- checking the prime factors of any composite is enough to look for divisors. As a test taking strategy, the other three choices involve primes, so worth thinking about.
B

All primes from 2 to 266 .

Hint:
Remember, factors come in pairs (except for square root factors), so she would first find the smaller of the pair and wouldn't need to check the larger.
C

All primes from 2 to 133 .

Hint:
She doesn't need to check this high. Factors come in pairs, and something over 100 is going to be paired with something less than 3, so she will find that earlier.
D

All primes from \( \large 2\) to \( \large \sqrt{267}\).

Hint:
\(\sqrt{267} \times \sqrt{267}=267\). Any other pair of factors will have one factor less than \( \sqrt{267}\) and one greater, so she only needs to check up to \( \sqrt{267}\).
Question 10 Explanation: 
Topic: Identify prime and composite numbers (Objective 0018).
Question 11

There are 15 students for every teacher.  Let t represent the number of teachers and let s represent the number of students.  Which of the following equations is correct?

A
\( \large t=s+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
B
\( \large s=t+15\)
Hint:
When there are 2 teachers, how many students should there be? Do those values satisfy this equation?
C
\( \large t=15s\)
Hint:
This is a really easy mistake to make, which comes from transcribing directly from English, "1 teachers equals 15 students." To see that it's wrong, plug in s=2; do you really need 30 teachers for 2 students? To avoid this mistake, insert the word "number," "Number of teachers equals 15 times number of students" is more clearly problematic.
D
\( \large s=15t\)
Question 11 Explanation: 
Topic: Select the linear equation that best models a real-world situation (Objective 0022).
Question 12

Which of the lines depicted below is a graph of \( \large y=2x-5\)?

A

a

Hint:
The slope of line a is negative.
B

b

Hint:
Wrong slope and wrong intercept.
C

c

Hint:
The intercept of line c is positive.
D

d

Hint:
Slope is 2 -- for every increase of 1 in x, y increases by 2. Intercept is -5 -- the point (0,-5) is on the line.
Question 12 Explanation: 
Topic: Find a linear equation that represents a graph (Objective 0022).
Question 13

A family has four children.  What is the probability that two children are girls and two are boys?  Assume the the probability of having a boy (or a girl) is 50%.

A
\( \large \dfrac{1}{2}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
B
\( \large \dfrac{1}{4}\)
Hint:
How many different configurations are there from oldest to youngest, e.g. BGGG? How many of them have 2 boys and 2 girls?
C
\( \large \dfrac{1}{5}\)
Hint:
Some configurations are more probable than others -- i.e. it's more likely to have two boys and two girls than all boys. Be sure you are weighting properly.
D
\( \large \dfrac{3}{8}\)
Hint:
There are two possibilities for each child, so there are \(2 \times 2 \times 2 \times 2 =16\) different configurations, e.g. from oldest to youngest BBBG, BGGB, GBBB, etc. Of these configurations, there are 6 with two boys and two girls (this is the combination \(_{4}C_{2}\) or "4 choose 2"): BBGG, BGBG, BGGB, GGBB, GBGB, and GBBG. Thus the probability is 6/16=3/8.
Question 13 Explanation: 
Topic: Apply knowledge of combinations and permutations to the computation of probabilities (Objective 0026).
Question 14

Which of the following is equal to one million three hundred thousand?

A
\(\large1.3\times {{10}^{6}}\)
B
\(\large1.3\times {{10}^{9}}\)
Hint:
That's one billion three hundred million.
C
\(\large1.03\times {{10}^{6}}\)
Hint:
That's one million thirty thousand.
D
\(\large1.03\times {{10}^{9}}\)
Hint:
That's one billion thirty million
Question 14 Explanation: 
Topic: Scientific Notation (Objective 0016)
Question 15

Which of the lists below is in order from least to greatest value?

A
\( \large \dfrac{1}{2},\quad \dfrac{1}{3},\quad \dfrac{1}{4},\quad \dfrac{1}{5}\)
Hint:
This is ordered from greatest to least.
B
\( \large \dfrac{1}{3},\quad \dfrac{2}{7},\quad \dfrac{3}{8},\quad \dfrac{4}{11}\)
Hint:
1/3 = 2/6 is bigger than 2/7.
C
\( \large \dfrac{1}{4},\quad \dfrac{2}{5},\quad \dfrac{2}{3},\quad \dfrac{4}{5}\)
Hint:
One way to look at this: 1/4 and 2/5 are both less than 1/2, and 2/3 and 4/5 are both greater than 1/2. 1/4 is 25% and 2/5 is 40%, so 2/5 is greater. The distance from 2/3 to 1 is 1/3 and from 4/5 to 1 is 1/5, and 1/5 is less than 1/3, so 4/5 is bigger.
D
\( \large \dfrac{7}{8},\quad \dfrac{6}{7},\quad \dfrac{5}{6},\quad \dfrac{4}{5}\)
Hint:
This is in order from greatest to least.
Question 15 Explanation: 
Topic: Ordering Fractions (Objective 0017)
Question 16

What fraction of the area of the picture below is shaded?

A
\( \large \dfrac{17}{24}\)
Hint:
You might try adding segments so each quadrant is divided into 6 pieces with equal area -- there will be 24 regions, not all the same shape, but all the same area, with 17 of them shaded (for the top left quarter, you could also first change the diagonal line to a horizontal or vertical line that divides the square in two equal pieces and shade one) .
B
\( \large \dfrac{3}{4}\)
Hint:
Be sure you're taking into account the different sizes of the pieces.
C
\( \large \dfrac{2}{3}\)
Hint:
The bottom half of the picture is 2/3 shaded, and the top half is more than 2/3 shaded, so this answer is too small.
D
\( \large \dfrac{17}{6} \)
Hint:
This answer is bigger than 1, so doesn't make any sense. Be sure you are using the whole picture, not one quadrant, as the unit.
Question 16 Explanation: 
Topic: Models of Fractions (Objective 0017)
Question 17

Use the graph below to answer the question that follows:

 

The graph above best matches which of the following scenarios:

A

George left home at 10:00 and drove to work on a crooked path. He was stopped in traffic at 10:30 and 10:45. He drove 30 miles total.

Hint:
Just because he ended up 30 miles from home doesn't mean he drove 30 miles total.
B

George drove to work. On the way to work there is a little hill and a big hill. He slowed down for them. He made it to work at 11:15.

Hint:
The graph is not a picture of the roads.
C

George left home at 10:15. He drove 10 miles, then realized he‘d forgotten something at home. He turned back and got what he‘d forgotten. Then he drove in a straight line, at many different speeds, until he got to work around 11:15.

Hint:
A straight line on a distance versus time graph means constant speed.
D

George left home at 10:15. He drove 10 miles, then realized he‘d forgotten something at home. He turned back and got what he‘d forgotten. Then he drove at a constant speed until he got to work around 11:15.

Question 17 Explanation: 
Topic: Use qualitative graphs to represent functional relationships in the real world (Objective 0021).
Question 18

Use the graph below to answer the question that follows.

If the polygon shown above is reflected about the y axis and then rotated 90 degrees clockwise about the origin, which of the following graphs is the result?

A
Hint:
Try following the point (1,4) to see where it goes after each transformation.
B
C
Hint:
Make sure you're reflecting in the correct axis.
D
Hint:
Make sure you're rotating the correct direction.
Question 18 Explanation: 
Topic: Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry, similarity, and congruence; and use these concepts to solve problems (Objective 0024).
Question 19

There are six gumballs in a bag — two red and four green.  Six children take turns picking a gumball out of the bag without looking.   They do not return any gumballs to the bag.  What is the probability that the first two children to pick from the bag pick the red gumballs?

A
\( \large \dfrac{1}{3}\)
Hint:
This is the probability that the first child picks a red gumball, but not that the first two children pick red gumballs.
B
\( \large \dfrac{1}{8}\)
Hint:
Are you adding things that you should be multiplying?
C
\( \large \dfrac{1}{9}\)
Hint:
This would be the probability if the gumballs were returned to the bag.
D
\( \large \dfrac{1}{15}\)
Hint:
The probability that the first child picks red is 2/6 = 1/3. Then there are 5 gumballs in the bag, one red, so the probability that the second child picks red is 1/5. Thus 1/5 of the time, after the first child picks red, the second does too, so the probability is 1/5 x 1/3 = 1/15.
Question 19 Explanation: 
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
Question 20

Use the table below to answer the question that follows:

Gordon wants to buy three pounds of nuts.  Each of the stores above ordinarily sells the nuts for $4.99 a pound, but is offering a discount this week.  At which store can he buy the nuts for the least amount of money?

A

Store A

Hint:
This would save about $2.50. You can quickly see that D saves more.
B

Store B

Hint:
This saves 15% and C saves 25%.
C

Store C

D

Store D

Hint:
This is about 20% off, which is less of a discount than C.
Question 20 Explanation: 
Topic: Understand the meanings and models of integers, fractions, decimals,percents, and mixed numbers and apply them to the solution of word problems (Objective 0017).
Question 21

Kendra is trying to decide which fraction is greater, \(  \dfrac{4}{7}\) or \(  \dfrac{5}{8}\). Which of the following answers shows the best reasoning?

A

\( \dfrac{4}{7}\) is \( \dfrac{3}{7}\)away from 1, and \( \dfrac{5}{8}\) is \( \dfrac{3}{8}\)away from 1. Since eighth‘s are smaller than seventh‘s, \( \dfrac{5}{8}\) is closer to 1, and is the greater of the two fractions.

B

\( 7-4=3\) and \( 8-5=3\), so the fractions are equal.

Hint:
Not how to compare fractions. By this logic, 1/2 and 3/4 are equal, but 1/2 and 2/4 are not.
C

\( 4\times 8=32\) and \( 7\times 5=35\). Since \( 32<35\) , \( \dfrac{5}{8}<\dfrac{4}{7}\)

Hint:
Starts out as something that works, but the conclusion is wrong. 4/7 = 32/56 and 5/8 = 35/56. The cross multiplication gives the numerators, and 35/56 is bigger.
D

\( 4<5\) and \( 7<8\), so \( \dfrac{4}{7}<\dfrac{5}{8}\)

Hint:
Conclusion is correct, logic is wrong. With this reasoning, 1/2 would be less than 2/100,000.
Question 21 Explanation: 
Topics: Comparing fractions, and understanding the meaning of fractions (Objective 0017).
Question 22

Use the expression below to answer the question that follows.

                 \( \large \dfrac{\left( 4\times {{10}^{3}} \right)\times \left( 3\times {{10}^{4}} \right)}{6\times {{10}^{6}}}\)

Which of the following is equivalent to the expression above?

A

2

Hint:
\(10^3 \times 10^4=10^7\), and note that if you're guessing when the answers are so closely related, you're generally better off guessing one of the middle numbers.
B

20

Hint:
\( \dfrac{\left( 4\times {{10}^{3}} \right)\times \left( 3\times {{10}^{4}} \right)}{6\times {{10}^{6}}}=\dfrac {12 \times {{10}^{7}}}{6\times {{10}^{6}}}=\)\(2 \times {{10}^{1}}=20 \)
C

200

Hint:
\(10^3 \times 10^4=10^7\)
D

2000

Hint:
\(10^3 \times 10^4=10^7\), and note that if you're guessing when the answers are so closely related, you're generally better off guessing one of the middle numbers.
Question 22 Explanation: 
Topics: Scientific notation, exponents, simplifying fractions (Objective 0016, although overlaps with other objectives too).
Question 23

A sales companies pays its representatives $2 for each item sold, plus 40% of the price of the item.   The rest of the money that the representatives collect goes to the company.  All transactions are in cash, and all items cost $4 or more.   If the price of an item in dollars is p, which expression represents the amount of money the company collects when the item is sold?

A
\( \large \dfrac{3}{5}p-2\)
Hint:
The company gets 3/5=60% of the price, minus the $2 per item.
B
\( \large \dfrac{3}{5}\left( p-2 \right)\)
Hint:
This is sensible, but not what the problem states.
C
\( \large \dfrac{2}{5}p+2\)
Hint:
The company pays the extra $2; it doesn't collect it.
D
\( \large \dfrac{2}{5}p-2\)
Hint:
This has the company getting 2/5 = 40% of the price of each item, but that's what the representative gets.
Question 23 Explanation: 
Topic: Use algebra to solve word problems involving fractions, ratios, proportions, and percents (Objective 0020).
Question 24

Given that 10 cm is approximately equal to 4 inches, which of the following expressions models a way to find out approximately how many inches are equivalent to 350 cm?

A
\( \large 350\times \left( \dfrac{10}{4} \right)\)
Hint:
The final result should be smaller than 350, and this answer is bigger.
B
\( \large 350\times \left( \dfrac{4}{10} \right)\)
Hint:
Dimensional analysis can help here: \(350 \text{cm} \times \dfrac{4 \text{in}}{10 \text{cm}}\). The cm's cancel and the answer is in inches.
C
\( \large (10-4) \times 350 \)
Hint:
This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense.
D
\( \large (350-10) \times 4\)
Hint:
This answer doesn't make much sense. Try with a simpler example (e.g. 20 cm not 350 cm) to make sure that your logic makes sense.
Question 24 Explanation: 
Topic: Applying fractions to word problems (Objective 0017) This problem is similar to one on the official sample test for that objective, but it might fit better into unit conversion and dimensional analysis (Objective 0023: Measurement)
Question 25

The "houses" below are made of toothpicks and gum drops.

Which of the following does not represent the number of gumdrops in a row of h houses?

A
\( \large 2+3h\)
Hint:
Think of this as start with 2 gumdrops on the left wall, and then add 3 gumdrops for each house.
B
\( \large 5+3(h-1)\)
Hint:
Think of this as start with one house, and then add 3 gumdrops for each of the other h-1 houses.
C
\( \large h+(h+1)+(h+1)\)
Hint:
Look at the gumdrops in 3 rows: h gumdrops for the "rooftops," h+1 for the tops of the vertical walls, and h+1 for the floors.
D
\( \large 5+3h\)
Hint:
This one is not a correct equation (which makes it the correct answer!). Compare to choice A. One of them has to be wrong, as they differ by 3.
Question 25 Explanation: 
Topic: Translate among different representations (e.g., tables, graphs, algebraic expressions, verbal descriptions) of functional relationships (Objective 0021).
Question 26

Here is a mental math strategy for computing 26 x 16:

Step 1: 100 x 16 = 1600

Step 2: 25 x 16 = 1600 ÷· 4 = 400

Step 3: 26 x 16 = 400 + 16 = 416

Which property best justifies Step 3 in this strategy?

A

Commutative Property.

Hint:
For addition, the commutative property is \(a+b=b+a\) and for multiplication it's \( a \times b = b \times a\).
B

Associative Property.

Hint:
For addition, the associative property is \((a+b)+c=a+(b+c)\) and for multiplication it's \((a \times b) \times c=a \times (b \times c)\)
C

Identity Property.

Hint:
0 is the additive identity, because \( a+0=a\) and 1 is the multiplicative identity because \(a \times 1=a\). The phrase "identity property" is not standard.
D

Distributive Property.

Hint:
\( (25+1) \times 16 = 25 \times 16 + 1 \times 16 \). This is an example of the distributive property of multiplication over addition.
Question 26 Explanation: 
Topic: Analyze and justify mental math techniques, by applying arithmetic properties such as commutative, distributive, and associative (Objective 0019). Note that it's hard to write a question like this as a multiple choice question -- worthwhile to understand why the other steps work too.
Question 27

Which property is not shared by all rhombi?

A

4 congruent sides

Hint:
The most common definition of a rhombus is a quadrilateral with 4 congruent sides.
B

A center of rotational symmetry

Hint:
The diagonal of a rhombus separates it into two congruent isosceles triangles. The center of this line is a center of 180 degree rotational symmetry that switches the triangles.
C

4 congruent angles

Hint:
Unless the rhombus is a square, it does not have 4 congruent angles.
D

2 sets of parallel sides

Hint:
All rhombi are parallelograms.
Question 27 Explanation: 
Topic: Classify and analyze polygons using attributes of sides and angles, and symmetry (Objective 0024).
Question 28

What is the least common multiple of 540 and 216?

A
\( \large{{2}^{5}}\cdot {{3}^{6}}\cdot 5\)
Hint:
This is the product of the numbers, not the LCM.
B
\( \large{{2}^{3}}\cdot {{3}^{3}}\cdot 5\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then for each prime that's a factor of either number, use the largest exponent that appears in one of the factorizations. You can also take the product of the two numbers divided by their GCD.
C
\( \large{{2}^{2}}\cdot {{3}^{3}}\cdot 5\)
Hint:
216 is a multiple of 8.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\cdot {{5}^{2}}\)
Hint:
Not a multiple of 216 and not a multiple of 540.
Question 28 Explanation: 
Topic: Find the least common multiple of a set of numbers (Objective 0018).
Question 29

The equation \( \large F=\frac{9}{5}C+32\) is used to convert a temperature measured in Celsius to the equivalent Farentheit temperature.

A patient's temperature increased by 1.5° Celcius.  By how many degrees Fahrenheit did her temperature increase?

A

1.5°

Hint:
Celsius and Fahrenheit don't increase at the same rate.
B

1.8°

Hint:
That's how much the Fahrenheit temp increases when the Celsius temp goes up by 1 degree.
C

2.7°

Hint:
Each degree increase in Celsius corresponds to a \(\dfrac{9}{5}=1.8\) degree increase in Fahrenheit. Thus the increase is 1.8+0.9=2.7.
D

Not enough information.

Hint:
A linear equation has constant slope, which means that every increase of the same amount in one variable, gives a constant increase in the other variable. It doesn't matter what temperature the patient started out at.
Question 29 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 30

The least common multiple of 60 and N is 1260. Which of the following could be the prime factorization of N?

A
\( \large2\cdot 5\cdot 7\)
Hint:
1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM.
B
\( \large{{2}^{3}}\cdot {{3}^{2}}\cdot 5 \cdot 7\)
Hint:
1260 is not divisible by 8, so it isn't a multiple of this N.
C
\( \large3 \cdot 5 \cdot 7\)
Hint:
1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM.
D
\( \large{{3}^{2}}\cdot 5\cdot 7\)
Hint:
\(1260=2^2 \cdot 3^2 \cdot 5 \cdot 7\) and \(60=2^2 \cdot 3 \cdot 5\). In order for 1260 to be the LCM, N has to be a multiple of \(3^2\) and of 7 (because 60 is not a multiple of either of these). N also cannot introduce a factor that would require the LCM to be larger (as in choice b).
Question 30 Explanation: 
Topic: Least Common Multiple (Objective 0018)
Question 31

Below are front, side, and top views of a three-dimensional solid.

Which of the following could be the solid shown above?

A

A sphere

Hint:
All views would be circles.
B

A cylinder

C

A cone

Hint:
Two views would be triangles, not rectangles.
D

A pyramid

Hint:
How would one view be a circle?
Question 31 Explanation: 
Topic: Match three-dimensional figures and their two-dimensional representations (e.g., nets, projections, perspective drawings) (Objective 0024).
Question 32

Here is a number trick:

 1) Pick a whole number

 2) Double your number.

 3) Add 20 to the above result.

 4) Multiply the above by 5

 5) Subtract 100

 6) Divide by 10

The result is always the number that you started with! Suppose you start by picking N. Which of the equations below best demonstrates that the result after Step 6 is also N?

A
\( \large N*2+20*5-100\div 10=N\)
Hint:
Use parentheses or else order of operations is off.
B
\( \large \left( \left( 2*N+20 \right)*5-100 \right)\div 10=N\)
C
\( \large \left( N+N+20 \right)*5-100\div 10=N\)
Hint:
With this answer you would subtract 10, instead of subtracting 100 and then dividing by 10.
D
\( \large \left( \left( \left( N\div 10 \right)-100 \right)*5+20 \right)*2=N\)
Hint:
This answer is quite backwards.
Question 32 Explanation: 
Topic: Recognize and apply the concepts of variable, function, equality, and equation to express relationships algebraically (Objective 0020).
Question 33

Which of the numbers below is a fraction equivalent to \( 0.\bar{6}\)?

A
\( \large \dfrac{4}{6}\)
Hint:
\( 0.\bar{6}=\dfrac{2}{3}=\dfrac{4}{6}\)
B
\( \large \dfrac{3}{5}\)
Hint:
This is equal to 0.6, without the repeating decimal. Answer is equivalent to choice c, which is another way to tell that it's wrong.
C
\( \large \dfrac{6}{10}\)
Hint:
This is equal to 0.6, without the repeating decimal. Answer is equivalent to choice b, which is another way to tell that it's wrong.
D
\( \large \dfrac{1}{6}\)
Hint:
This is less than a half, and \( 0.\bar{6}\) is greater than a half.
Question 33 Explanation: 
Topic: Converting between fraction and decimal representations (Objective 0017)
Question 34

Which of the following is equal to eleven billion four hundred thousand?

A
\( \large 11,400,000\)
Hint:
That's eleven million four hundred thousand.
B
\(\large11,000,400,000\)
C
\( \large11,000,000,400,000\)
Hint:
That's eleven trillion four hundred thousand (although with British conventions; this answer is correct, but in the US, it isn't).
D
\( \large 11,400,000,000\)
Hint:
That's eleven billion four hundred million
Question 34 Explanation: 
Topic: Place Value (Objective 0016)
Question 35

Taxicab fares in Boston (Spring 2012) are $2.60 for the first \(\dfrac{1}{7}\) of a mile or less and $0.40 for each \(\dfrac{1}{7}\) of a mile after that.

Let d represent the distance a passenger travels in miles (with \(d>\dfrac{1}{7}\)). Which of the following expressions represents the total fare?

A
\( \large \$2.60+\$0.40d\)
Hint:
It's 40 cents for 1/7 of a mile, not per mile.
B
\( \large \$2.60+\$0.40\dfrac{d}{7}\)
Hint:
According to this equation, going 7 miles would cost $3; does that make sense?
C
\( \large \$2.20+\$2.80d\)
Hint:
You can think of the fare as $2.20 to enter the cab, and then $0.40 for each 1/7 of a mile, including the first 1/7 of a mile (or $2.80 per mile).

Alternatively, you pay $2.60 for the first 1/7 of a mile, and then $2.80 per mile for d-1/7 miles. The total is 2.60+2.80(d-1/7) = 2.60+ 2.80d -.40 = 2.20+2.80d.
D
\( \large \$2.60+\$2.80d\)
Hint:
Don't count the first 1/7 of a mile twice.
Question 35 Explanation: 
Topic: Identify variables and derive algebraic expressions that represent real-world situations (Objective 0020), and select the linear equation that best models a real-world situation (Objective 0022).
Question 36

Which of the lists below contains only irrational numbers?

A
\( \large\pi , \quad \sqrt{6},\quad \sqrt{\dfrac{1}{2}}\)
B
\( \large\pi , \quad \sqrt{9}, \quad \pi +1\)
Hint:
\( \sqrt{9}=3\)
C
\( \large\dfrac{1}{3},\quad \dfrac{5}{4},\quad \dfrac{2}{9}\)
Hint:
These are all rational.
D
\( \large-3,\quad 14,\quad 0\)
Hint:
These are all rational.
Question 36 Explanation: 
Topic: Identifying rational and irrational numbers (Objective 0016).
Question 37

Which of the following inequalities describes all values of x  with \(\large  \dfrac{x}{2}\le \dfrac{x}{3}\)?

A
\( \large x < 0\)
Hint:
If x =0, then x/2 = x/3, so this answer can't be correct.
B
\( \large x \le 0\)
C
\( \large x > 0\)
Hint:
If x =0, then x/2 = x/3, so this answer can't be correct.
D
\( \large x \ge 0\)
Hint:
Try plugging in x = 6.
Question 37 Explanation: 
Topics: Inequalities, operations (Objective 0019) (not exactly sure how to classify, but this is like one of the problems on the official sample test).
Question 38

M is a multiple of 26.  Which of the following cannot be true?

A

M is odd.

Hint:
All multiples of 26 are also multiples of 2, so they must be even.
B

M is a multiple of 3.

Hint:
3 x 26 is a multiple of both 3 and 26.
C

M is 26.

Hint:
1 x 26 is a multiple of 26.
D

M is 0.

Hint:
0 x 26 is a multiple of 26.
Question 38 Explanation: 
Topic: Characteristics of composite numbers (Objective 0018).
Question 39

The expression \( \large {{7}^{-4}}\cdot {{8}^{-6}}\) is equal to which of the following?

A
\( \large \dfrac{8}{{{\left( 56 \right)}^{4}}}\)
Hint:
The bases are whole numbers, and the exponents are negative. How can the numerator be 8?
B
\( \large \dfrac{64}{{{\left( 56 \right)}^{4}}}\)
Hint:
The bases are whole numbers, and the exponents are negative. How can the numerator be 64?
C
\( \large \dfrac{1}{8\cdot {{\left( 56 \right)}^{4}}}\)
Hint:
\(8^{-6}=8^{-4} \times 8^{-2}\)
D
\( \large \dfrac{1}{64\cdot {{\left( 56 \right)}^{4}}}\)
Question 39 Explanation: 
Topics: Laws of exponents (Objective 0019).
Question 40

Use the expression below to answer the question that follows.

      \( \large 3\times {{10}^{4}}+2.2\times {{10}^{2}}\)

Which of the following is closest to the expression above?

A

Five million

Hint:
Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values.
B

Fifty thousand

Hint:
Pay attention to the exponents. Adding 3 and 2 doesn't work because they have different place values.
C

Three million

Hint:
Don't add the exponents.
D

Thirty thousand

Hint:
\( 3\times {{10}^{4}} = 30,000;\) the other term is much smaller and doesn't change the estimate.
Question 40 Explanation: 
Topics: Place value, scientific notation, estimation (Objective 0016)
Question 41

Use the four figures below to answer the question that follows:

How many of the figures pictured above have at least one line of reflective symmetry?

A
\( \large 1\)
B
\( \large 2\)
Hint:
The ellipse has 2 lines of reflective symmetry (horizontal and vertical, through the center) and the triangle has 3. The other two figures have rotational symmetry, but not reflective symmetry.
C
\( \large 3\)
D
\( \large 4\)
Hint:
All four have rotational symmetry, but not reflective symmetry.
Question 41 Explanation: 
Topic: Analyze and apply geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry, similarity, and congruence; and use these concepts to solve problems (Objective 0024).
Question 42

Here are some statements:

I) 5 is an integer    II)\( -5 \)  is an integer    III) \(0\) is an integer

Which of the statements are true?

A

I only

B

I and II only

C

I and III only

D

I, II, and III

Hint:
The integers are ...-3, -2, -1, 0, 1, 2, 3, ....
Question 42 Explanation: 
Topic: Characteristics of Integers (Objective 0016)
Question 43

Here is a method that a student used for subtraction:

Which of the following is correct?

A

The student used a method that worked for this problem and can be generalized to any subtraction problem.

Hint:
Note that this algorithm is taught as the "standard" algorithm in much of Europe (it's where the term "borrowing" came from -- you borrow on top and "pay back" on the bottom).
B

The student used a method that worked for this problem and that will work for any subtraction problem that only requires one regrouping; it will not work if more regrouping is required.

Hint:
Try some more examples.
C

The student used a method that worked for this problem and will work for all three-digit subtraction problems, but will not work for larger problems.

Hint:
Try some more examples.
D

The student used a method that does not work. The student made two mistakes that cancelled each other out and was lucky to get the right answer for this problem.

Hint:
Remember, there are many ways to do subtraction; there is no one "right" algorithm.
Question 43 Explanation: 
Topic: Analyze and justify standard and non-standard computational techniques (Objective 0019).
Question 44

A publisher prints a series of books with covers made of identical material and using the same thickness of paper for each page.  The covers of the book together are 0.4 cm thick, and 125 pieces of the paper used together are 1 cm thick.

The publisher uses a linear function to determine the total thickness, T(n) of a book made with n sheets of paper.   What are the slope and intercept of T(n)?

A

Intercept = 0.4 cm, Slope = 125 cm/page

Hint:
This would mean that each page of the book was 125 cm thick.
B

Intercept =0.4 cm, Slope = \(\dfrac{1}{125}\)cm/page

Hint:
The intercept is how thick the book would be with no pages in it. The slope is how much 1 extra page adds to the thickness of the book.
C

Intercept = 125 cm, Slope = 0.4 cm

Hint:
This would mean that with no pages in the book, it would be 125 cm thick.
D

Intercept = \(\dfrac{1}{125}\)cm, Slope = 0.4 pages/cm

Hint:
This would mean that each new page of the book made it 0.4 cm thicker.
Question 44 Explanation: 
Topic: Interpret the meaning of the slope and the intercepts of a linear equation that models a real-world situation (Objective 0022).
Question 45

What is the greatest common factor of 540 and 216?

A
\( \large{{2}^{2}}\cdot {{3}^{3}}\)
Hint:
One way to solve this is to factor both numbers: \(540=2^2 \cdot 3^3 \cdot 5\) and \(216=2^3 \cdot 3^3\). Then take the smaller power for each prime that is a factor of both numbers.
B
\( \large2\cdot 3\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
C
\( \large{{2}^{3}}\cdot {{3}^{3}}\)
Hint:
\(2^3 = 8\) is not a factor of 540.
D
\( \large{{2}^{2}}\cdot {{3}^{2}}\)
Hint:
This is a common factor of both numbers, but it's not the greatest common factor.
Question 45 Explanation: 
Topic: Find the greatest common factor of a set of numbers (Objective 0018).
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 45 questions to complete.
List
Return
Shaded items are complete.
12345
678910
1112131415
1617181920
2122232425
2627282930
3132333435
3637383940
4142434445
End
Return

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed).   General comments can be left here.